ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11838
  4. Cited By
Page Layout Analysis System for Unconstrained Historic Documents

Page Layout Analysis System for Unconstrained Historic Documents

23 February 2021
O. Kodym
Michal Hradiš
ArXiv (abs)PDFHTML

Papers citing "Page Layout Analysis System for Unconstrained Historic Documents"

9 / 9 papers shown
Title
docExtractor: An off-the-shelf historical document element extraction
docExtractor: An off-the-shelf historical document element extraction
Tom Monnier
Mathieu Aubry
VLM
54
28
0
15 Dec 2020
Joint Layout Analysis, Character Detection and Recognition for
  Historical Document Digitization
Joint Layout Analysis, Character Detection and Recognition for Historical Document Digitization
Weihong Ma
Hesuo Zhang
Lianwen Jin
Sihang Wu
Jiapeng Wang
Yongpan Wang
30
37
0
14 Jul 2020
BADAM: A Public Dataset for Baseline Detection in Arabic-script
  Manuscripts
BADAM: A Public Dataset for Baseline Detection in Arabic-script Manuscripts
Benjamin Kiessling
D. Ezra
M. Miller
46
29
0
09 Jul 2019
Brno Mobile OCR Dataset
Brno Mobile OCR Dataset
Martin Kiss
Michal Hradiš
O. Kodym
28
18
0
02 Jul 2019
Labeling, Cutting, Grouping: an Efficient Text Line Segmentation Method
  for Medieval Manuscripts
Labeling, Cutting, Grouping: an Efficient Text Line Segmentation Method for Medieval Manuscripts
Michele Alberti
Lars Vogtlin
Vinaychandran Pondenkandath
Mathias Seuret
Rolf Ingold
Marcus Liwicki
43
29
0
11 Jun 2019
Multi-Task Handwritten Document Layout Analysis
Multi-Task Handwritten Document Layout Analysis
Lorenzo Quirós
49
40
0
22 Jun 2018
A Two-Stage Method for Text Line Detection in Historical Documents
A Two-Stage Method for Text Line Detection in Historical Documents
Tobias Grüning
Gundram Leifert
Tobias Strauß
Johannes Michael
R. Labahn
50
143
0
09 Feb 2018
Learning to Extract Semantic Structure from Documents Using Multimodal
  Fully Convolutional Neural Network
Learning to Extract Semantic Structure from Documents Using Multimodal Fully Convolutional Neural Network
Xiao Yang
Ersin Yumer
P. Asente
Mike Kraley
Daniel Kifer
C. Lee Giles
70
230
0
07 Jun 2017
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image
  Segmentation
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
Fausto Milletari
Nassir Navab
Seyed-Ahmad Ahmadi
238
8,716
0
15 Jun 2016
1