ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11628
  4. Cited By
FINE Samples for Learning with Noisy Labels

FINE Samples for Learning with Noisy Labels

23 February 2021
Taehyeon Kim
Jongwoo Ko
Sangwook Cho
J. Choi
Se-Young Yun
    NoLa
ArXivPDFHTML

Papers citing "FINE Samples for Learning with Noisy Labels"

17 / 17 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
173
0
0
24 Apr 2025
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
C. Kim
Sangwoo Moon
Jihwan Moon
Dongyeon Woo
Gunhee Kim
NoLa
57
0
0
25 Feb 2025
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy
  Labels
MILD: Modeling the Instance Learning Dynamics for Learning with Noisy Labels
Chuanyan Hu
Shipeng Yan
Zhitong Gao
Xuming He
NoLa
24
4
0
20 Jun 2023
Instance-dependent Noisy-label Learning with Graphical Model Based
  Noise-rate Estimation
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
38
1
0
31 May 2023
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Improve Noise Tolerance of Robust Loss via Noise-Awareness
Kehui Ding
Jun Shu
Deyu Meng
Zongben Xu
NoLa
33
5
0
18 Jan 2023
Rethinking Precision of Pseudo Label: Test-Time Adaptation via
  Complementary Learning
Rethinking Precision of Pseudo Label: Test-Time Adaptation via Complementary Learning
Jiayi Han
Longbin Zeng
Liang Du
Weiyang Ding
Jianfeng Feng
OOD
TTA
21
14
0
15 Jan 2023
Towards the Identifiability in Noisy Label Learning: A Multinomial
  Mixture Approach
Towards the Identifiability in Noisy Label Learning: A Multinomial Mixture Approach
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
NoLa
40
0
0
04 Jan 2023
Denoising after Entropy-based Debiasing A Robust Training Method for
  Dataset Bias with Noisy Labels
Denoising after Entropy-based Debiasing A Robust Training Method for Dataset Bias with Noisy Labels
Sumyeong Ahn
Se-Young Yun
NoLa
29
2
0
01 Dec 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao Wang
C. Yuan
24
3
0
11 Oct 2022
Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
  Robust Loss
Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss
B. Felfeliyan
A. Hareendranathan
G. Kuntze
S. Wichuk
Nils D. Forkert
Jacob L. Jaremko
J. Ronsky
NoLa
35
2
0
16 Sep 2022
Instance-Dependent Noisy Label Learning via Graphical Modelling
Instance-Dependent Noisy Label Learning via Graphical Modelling
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
37
27
0
02 Sep 2022
Exploiting Inter-Sample Affinity for Knowability-Aware Universal Domain
  Adaptation
Exploiting Inter-Sample Affinity for Knowability-Aware Universal Domain Adaptation
Yifan Wang
Lin Zhang
Ran Song
Hongliang Li
Lin Ma
Wei Emma Zhang
24
6
0
19 Jul 2022
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of
  Black-Box Predictors
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors
Jianfei Yang
Xiangyu Peng
Kaidi Wang
Zheng Hua Zhu
Jiashi Feng
Lihua Xie
Yang You
29
27
0
28 May 2022
Detecting Label Errors by using Pre-Trained Language Models
Detecting Label Errors by using Pre-Trained Language Models
Derek Chong
Jenny Hong
Christopher D. Manning
NoLa
38
21
0
25 May 2022
Robust Training under Label Noise by Over-parameterization
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
27
106
0
28 Feb 2022
SSR: An Efficient and Robust Framework for Learning with Unknown Label
  Noise
SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise
Chen Feng
Georgios Tzimiropoulos
Ioannis Patras
NoLa
27
18
0
22 Nov 2021
Learning Transferable Parameters for Unsupervised Domain Adaptation
Learning Transferable Parameters for Unsupervised Domain Adaptation
Zhongyi Han
Haoliang Sun
Yilong Yin
OOD
35
45
0
13 Aug 2021
1