ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11575
  4. Cited By
Product-form estimators: exploiting independence to scale up Monte Carlo

Product-form estimators: exploiting independence to scale up Monte Carlo

23 February 2021
Juan Kuntz
F. R. Crucinio
A. M. Johansen
ArXivPDFHTML

Papers citing "Product-form estimators: exploiting independence to scale up Monte Carlo"

5 / 5 papers shown
Title
PASOA- PArticle baSed Bayesian Optimal Adaptive design
PASOA- PArticle baSed Bayesian Optimal Adaptive design
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
18
1
0
11 Feb 2024
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
19
6
0
04 Feb 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
10
0
29 Oct 2021
Divide-and-Conquer Fusion
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
21
2
0
14 Oct 2021
A principled stopping rule for importance sampling
A principled stopping rule for importance sampling
Medha Agarwal
Dootika Vats
Victor Elvira
33
2
0
30 Aug 2021
1