Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.10333
Cited By
Provably Strict Generalisation Benefit for Equivariant Models
20 February 2021
Bryn Elesedy
Sheheryar Zaidi
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provably Strict Generalisation Benefit for Equivariant Models"
25 / 25 papers shown
Title
Learning with Exact Invariances in Polynomial Time
Ashkan Soleymani
B. Tahmasebi
Stefanie Jegelka
P. Jaillet
78
0
0
27 Feb 2025
Data Augmentation and Regularization for Learning Group Equivariance
Oskar Nordenfors
Axel Flinth
57
0
0
10 Feb 2025
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
42
4
0
23 Aug 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
50
2
0
30 May 2024
Can Euclidean Symmetry be Leveraged in Reinforcement Learning and Planning?
Linfeng Zhao
Owen Howell
Jung Yeon Park
Xu Zhu
Robin G. Walters
Lawson L. S. Wong
36
1
0
17 Jul 2023
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
35
22
0
27 May 2023
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
29
6
0
26 May 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
41
5
0
23 Mar 2023
Deep Neural Networks with Efficient Guaranteed Invariances
M. Rath
A. P. Condurache
16
4
0
02 Mar 2023
Equivariant Architectures for Learning in Deep Weight Spaces
Aviv Navon
Aviv Shamsian
Idan Achituve
Ethan Fetaya
Gal Chechik
Haggai Maron
47
63
0
30 Jan 2023
VC dimensions of group convolutional neural networks
P. Petersen
A. Sepliarskaia
VLM
27
7
0
19 Dec 2022
Invariant Lipschitz Bandits: A Side Observation Approach
Nam-Phuong Tran
Long Tran-Thanh
47
1
0
14 Dec 2022
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDL
MLT
AI4CE
29
51
0
24 Nov 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
56
17
0
24 Oct 2022
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
35
2
0
17 Oct 2022
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
40
89
0
16 Oct 2022
Representation Theory for Geometric Quantum Machine Learning
Michael Ragone
Paolo Braccia
Quynh T. Nguyen
Louis Schatzki
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
AI4CE
28
73
0
14 Oct 2022
Image to Icosahedral Projection for
S
O
(
3
)
\mathrm{SO}(3)
SO
(
3
)
Object Reasoning from Single-View Images
David M. Klee
Ondrej Biza
Robert W. Platt
Robin G. Walters
26
4
0
18 Jul 2022
A Theory of PAC Learnability under Transformation Invariances
Hang Shao
Omar Montasser
Avrim Blum
21
18
0
15 Feb 2022
Residual Pathway Priors for Soft Equivariance Constraints
Marc Finzi
Gregory W. Benton
A. Wilson
BDL
UQCV
24
50
0
02 Dec 2021
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
Cengiz Pehlevan
18
5
0
14 Oct 2021
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
40
14
0
12 Oct 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
27
36
0
11 Oct 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1