ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.10015
  4. Cited By
Information-Theoretic Abstractions for Resource-Constrained Agents via
  Mixed-Integer Linear Programming

Information-Theoretic Abstractions for Resource-Constrained Agents via Mixed-Integer Linear Programming

19 February 2021
Daniel T. Larsson
Dipankar Maity
Panagiotis Tsiotras
ArXiv (abs)PDFHTML

Papers citing "Information-Theoretic Abstractions for Resource-Constrained Agents via Mixed-Integer Linear Programming"

4 / 4 papers shown
Title
Q-Search Trees: An Information-Theoretic Approach Towards Hierarchical
  Abstractions for Agents with Computational Limitations
Q-Search Trees: An Information-Theoretic Approach Towards Hierarchical Abstractions for Agents with Computational Limitations
Daniel T. Larsson
Dipankar Maity
Panagiotis Tsiotras
44
7
0
30 Sep 2019
Anytime Stereo Image Depth Estimation on Mobile Devices
Anytime Stereo Image Depth Estimation on Mobile Devices
Yan Wang
Zihang Lai
Gao Huang
Brian H. Wang
Laurens van der Maaten
M. Campbell
Kilian Q. Weinberger
70
189
0
26 Oct 2018
Nonlinear Information Bottleneck
Nonlinear Information Bottleneck
Artemy Kolchinsky
Brendan D. Tracey
David Wolpert
55
156
0
06 May 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
126
1,726
0
01 Dec 2016
1