Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.09703
Cited By
Near-Optimal Randomized Exploration for Tabular Markov Decision Processes
19 February 2021
Zhihan Xiong
Ruoqi Shen
Qiwen Cui
Maryam Fazel
S. Du
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Near-Optimal Randomized Exploration for Tabular Markov Decision Processes"
11 / 11 papers shown
Title
Settling the Sample Complexity of Online Reinforcement Learning
Zihan Zhang
Yuxin Chen
Jason D. Lee
S. Du
OffRL
133
22
0
25 Jul 2023
Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free Reinforcement Learning
Gen Li
Laixi Shi
Yuxin Chen
Yuejie Chi
OffRL
56
51
0
09 Oct 2021
Improved Worst-Case Regret Bounds for Randomized Least-Squares Value Iteration
Priyank Agrawal
Jinglin Chen
Nan Jiang
55
19
0
23 Oct 2020
Q
Q
Q
-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
57
59
0
16 Jun 2020
Q-learning with UCB Exploration is Sample Efficient for Infinite-Horizon MDP
Kefan Dong
Yuanhao Wang
Xiaoyu Chen
Liwei Wang
OffRL
42
95
0
27 Jan 2019
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds
Andrea Zanette
Emma Brunskill
OffRL
93
274
0
01 Jan 2019
Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes
Ronan Fruit
Matteo Pirotta
A. Lazaric
36
61
0
06 Jul 2018
Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning
Christoph Dann
Tor Lattimore
Emma Brunskill
67
307
0
22 Mar 2017
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
79
302
0
22 Mar 2017
Why is Posterior Sampling Better than Optimism for Reinforcement Learning?
Ian Osband
Benjamin Van Roy
BDL
76
257
0
01 Jul 2016
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
E. Kaufmann
N. Korda
Rémi Munos
119
585
0
18 May 2012
1