ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.08452
  4. Cited By
Globally-Robust Neural Networks
v1v2 (latest)

Globally-Robust Neural Networks

16 February 2021
Klas Leino
Zifan Wang
Matt Fredrikson
    AAMLOOD
ArXiv (abs)PDFHTML

Papers citing "Globally-Robust Neural Networks"

39 / 39 papers shown
Title
On the uncertainty principle of neural networks
On the uncertainty principle of neural networks
Jun-Jie Zhang
Dong-xiao Zhang
Jian-Nan Chen
L. Pang
Deyu Meng
108
2
0
17 Jan 2025
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
95
3
0
03 Jul 2024
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
86
11
0
29 Sep 2023
Orthogonalizing Convolutional Layers with the Cayley Transform
Orthogonalizing Convolutional Layers with the Cayley Transform
Asher Trockman
J. Zico Kolter
64
113
0
14 Apr 2021
Training robust neural networks using Lipschitz bounds
Training robust neural networks using Lipschitz bounds
Patricia Pauli
Anne Koch
J. Berberich
Paul Kohler
Frank Allgöwer
69
160
0
06 May 2020
MACER: Attack-free and Scalable Robust Training via Maximizing Certified
  Radius
MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius
Runtian Zhai
Chen Dan
Di He
Huan Zhang
Boqing Gong
Pradeep Ravikumar
Cho-Jui Hsieh
Liwei Wang
OODAAML
89
177
0
08 Jan 2020
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional
  Networks
Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
Qiyang Li
Saminul Haque
Cem Anil
James Lucas
Roger C. Grosse
Joern-Henrik Jacobsen
82
116
0
03 Nov 2019
Adversarial Robustness through Local Linearization
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
67
308
0
04 Jul 2019
Towards Stable and Efficient Training of Verifiably Robust Neural
  Networks
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
78
348
0
14 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
96
460
0
12 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed
  Classifiers
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
71
551
0
09 Jun 2019
Scaleable input gradient regularization for adversarial robustness
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
64
79
0
27 May 2019
Universal Lipschitz Approximation in Bounded Depth Neural Networks
Universal Lipschitz Approximation in Bounded Depth Neural Networks
Jérémy E. Cohen
Todd P. Huster
Ravid Cohen
AAML
44
23
0
09 Apr 2019
Provable Certificates for Adversarial Examples: Fitting a Ball in the
  Union of Polytopes
Provable Certificates for Adversarial Examples: Fitting a Ball in the Union of Polytopes
Matt Jordan
Justin Lewis
A. Dimakis
AAML
66
57
0
20 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
152
2,044
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
137
2,551
0
24 Jan 2019
Generalizable Adversarial Training via Spectral Normalization
Generalizable Adversarial Training via Spectral Normalization
Farzan Farnia
Jesse M. Zhang
David Tse
OODAAML
75
140
0
19 Nov 2018
Sorting out Lipschitz function approximation
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
324
0
13 Nov 2018
Efficient Neural Network Robustness Certification with General
  Activation Functions
Efficient Neural Network Robustness Certification with General Activation Functions
Huan Zhang
Tsui-Wei Weng
Pin-Yu Chen
Cho-Jui Hsieh
Luca Daniel
AAML
93
761
0
02 Nov 2018
Provable Robustness of ReLU networks via Maximization of Linear Regions
Provable Robustness of ReLU networks via Maximization of Linear Regions
Francesco Croce
Maksym Andriushchenko
Matthias Hein
74
166
0
17 Oct 2018
On Lipschitz Bounds of General Convolutional Neural Networks
On Lipschitz Bounds of General Convolutional Neural Networks
Dongmian Zou
R. Balan
Maneesh Kumar Singh
45
54
0
04 Aug 2018
Limitations of the Lipschitz constant as a defense against adversarial
  examples
Limitations of the Lipschitz constant as a defense against adversarial examples
Todd P. Huster
C. Chiang
R. Chadha
AAML
45
84
0
25 Jul 2018
Scaling provable adversarial defenses
Scaling provable adversarial defenses
Eric Wong
Frank R. Schmidt
J. H. Metzen
J. Zico Kolter
AAML
76
449
0
31 May 2018
The Singular Values of Convolutional Layers
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
84
203
0
26 May 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
108
695
0
25 Apr 2018
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
Henry Gouk
E. Frank
Bernhard Pfahringer
M. Cree
170
479
0
12 Apr 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,440
0
16 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation
  Invariance for Deep Neural Networks
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
105
308
0
12 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILMAAML
96
934
0
09 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory
  Approach
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
83
467
0
31 Jan 2018
Certified Defenses against Adversarial Examples
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
111
968
0
29 Jan 2018
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
77
117
0
20 Nov 2017
Provable defenses against adversarial examples via the convex outer
  adversarial polytope
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
125
1,503
0
02 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
307
12,069
0
19 Jun 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial
  Manipulation
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
110
512
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
126
1,864
0
20 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
138
808
0
28 Apr 2017
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
112
3,962
0
24 Nov 2015
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
275
14,927
1
21 Dec 2013
1