ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.07936
  4. Cited By
DFAC Framework: Factorizing the Value Function via Quantile Mixture for
  Multi-Agent Distributional Q-Learning

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

16 February 2021
Wei-Fang Sun
Cheng-Kuang Lee
Chun-Yi Lee
    OffRL
ArXivPDFHTML

Papers citing "DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning"

20 / 20 papers shown
Title
Monotonic Value Function Factorisation for Deep Multi-Agent
  Reinforcement Learning
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
88
798
0
19 Mar 2020
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
ROMA: Multi-Agent Reinforcement Learning with Emergent Roles
Tonghan Wang
Heng Dong
V. Lesser
Chongjie Zhang
83
218
0
18 Mar 2020
Distributional Reward Decomposition for Reinforcement Learning
Distributional Reward Decomposition for Reinforcement Learning
Zichuan Lin
Li Zhao
Derek Yang
Tao Qin
Guangwen Yang
Tie-Yan Liu
OffRL
38
15
0
06 Nov 2019
Fully Parameterized Quantile Function for Distributional Reinforcement
  Learning
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
Derek Yang
Li Zhao
Zichuan Lin
Tao Qin
Jiang Bian
Tie-Yan Liu
OOD
OffRL
42
136
0
05 Nov 2019
Learning Nearly Decomposable Value Functions Via Communication
  Minimization
Learning Nearly Decomposable Value Functions Via Communication Minimization
Tonghan Wang
Jianhao Wang
Chongyi Zheng
Chongjie Zhang
40
133
0
11 Oct 2019
Efficient Communication in Multi-Agent Reinforcement Learning via
  Variance Based Control
Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control
Shanghang Zhang
Qi Zhang
Jieyu Lin
23
100
0
06 Sep 2019
QTRAN: Learning to Factorize with Transformation for Cooperative
  Multi-Agent Reinforcement Learning
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
Kyunghwan Son
Daewoo Kim
Wan Ju Kang
D. Hostallero
Yung Yi
OffRL
52
804
0
14 May 2019
Distributional Reinforcement Learning for Efficient Exploration
Distributional Reinforcement Learning for Efficient Exploration
B. Mavrin
Shangtong Zhang
Hengshuai Yao
Linglong Kong
Kaiwen Wu
Yaoliang Yu
OOD
OffRL
47
87
0
13 May 2019
Statistics and Samples in Distributional Reinforcement Learning
Statistics and Samples in Distributional Reinforcement Learning
Mark Rowland
Robert Dadashi
Saurabh Kumar
Rémi Munos
Marc G. Bellemare
Will Dabney
OffRL
51
89
0
21 Feb 2019
The StarCraft Multi-Agent Challenge
The StarCraft Multi-Agent Challenge
Mikayel Samvelyan
Tabish Rashid
Christian Schroeder de Witt
Gregory Farquhar
Nantas Nardelli
Tim G. J. Rudner
Chia-Man Hung
Philip Torr
Jakob N. Foerster
Shimon Whiteson
85
950
0
11 Feb 2019
Distributional reinforcement learning with linear function approximation
Distributional reinforcement learning with linear function approximation
Marc G. Bellemare
Nicolas Le Roux
Pablo Samuel Castro
Subhodeep Moitra
104
23
0
08 Feb 2019
A Comparative Analysis of Expected and Distributional Reinforcement
  Learning
A Comparative Analysis of Expected and Distributional Reinforcement Learning
Clare Lyle
Pablo Samuel Castro
Marc G. Bellemare
OffRL
45
81
0
30 Jan 2019
Information-Directed Exploration for Deep Reinforcement Learning
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
47
70
0
18 Dec 2018
QUOTA: The Quantile Option Architecture for Reinforcement Learning
QUOTA: The Quantile Option Architecture for Reinforcement Learning
Fengxiang Yang
Zhun Zhong
Zhiming Luo
Sheng Lian
Shaozi Li
OffRL
45
29
0
05 Nov 2018
Multi-Agent Common Knowledge Reinforcement Learning
Multi-Agent Common Knowledge Reinforcement Learning
Christian Schroeder de Witt
Jakob N. Foerster
Gregory Farquhar
Philip Torr
Wendelin Bohmer
Shimon Whiteson
50
108
0
27 Oct 2018
Implicit Quantile Networks for Distributional Reinforcement Learning
Implicit Quantile Networks for Distributional Reinforcement Learning
Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
OffRL
94
531
0
14 Jun 2018
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent
  Reinforcement Learning
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
131
1,669
0
30 Mar 2018
Distributional Reinforcement Learning with Quantile Regression
Distributional Reinforcement Learning with Quantile Regression
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
90
757
0
27 Oct 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
93
1,500
0
21 Jul 2017
Value-Decomposition Networks For Cooperative Multi-Agent Learning
Value-Decomposition Networks For Cooperative Multi-Agent Learning
P. Sunehag
Guy Lever
A. Gruslys
Wojciech M. Czarnecki
V. Zambaldi
...
Marc Lanctot
Nicolas Sonnerat
Joel Z Leibo
K. Tuyls
T. Graepel
67
1,002
0
16 Jun 2017
1