ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.07817
  4. Cited By
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
  Stakeholder Perspective on XAI and a Conceptual Model Guiding
  Interdisciplinary XAI Research

What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research

15 February 2021
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
    XAI
ArXivPDFHTML

Papers citing "What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research"

5 / 105 papers shown
Title
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
Dieter Brughmans
Pieter Leyman
David Martens
33
63
0
15 Apr 2021
Debiased-CAM to mitigate image perturbations with faithful visual
  explanations of machine learning
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
24
18
0
10 Dec 2020
Principles and Practice of Explainable Machine Learning
Principles and Practice of Explainable Machine Learning
Vaishak Belle
I. Papantonis
FaML
14
435
0
18 Sep 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
254
3,684
0
28 Feb 2017
Previous
123