ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.07542
  4. Cited By
High-Dimensional Gaussian Process Inference with Derivatives

High-Dimensional Gaussian Process Inference with Derivatives

15 February 2021
Filip de Roos
A. Gessner
Philipp Hennig
    GP
ArXiv (abs)PDFHTML

Papers citing "High-Dimensional Gaussian Process Inference with Derivatives"

21 / 21 papers shown
Title
Probabilistic Linear Solvers for Machine Learning
Probabilistic Linear Solvers for Machine Learning
Jonathan Wenger
Philipp Hennig
80
17
0
19 Oct 2020
Deep Bayesian Quadrature Policy Optimization
Deep Bayesian Quadrature Policy Optimization
Akella Ravi Tej
Kamyar Azizzadenesheli
Mohammad Ghavamzadeh
Anima Anandkumar
Yisong Yue
36
5
0
28 Jun 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
  Gaussian Process Regression with Derivatives
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
BDL
48
3
0
05 Mar 2020
Stochastic quasi-Newton with line-search regularization
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
58
21
0
03 Sep 2019
Active Probabilistic Inference on Matrices for Pre-Conditioning in
  Stochastic Optimization
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Filip de Roos
Philipp Hennig
AI4CEODL
61
3
0
20 Feb 2019
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
56
76
0
29 Oct 2018
Probabilistic Linear Solvers: A Unifying View
Probabilistic Linear Solvers: A Unifying View
Simon Bartels
Jon Cockayne
Ilse C. F. Ipsen
Philipp Hennig
75
24
0
08 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,104
0
28 Sep 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
69
74
0
24 Feb 2018
A Bayesian Conjugate Gradient Method
A Bayesian Conjugate Gradient Method
Jon Cockayne
Chris J. Oates
Ilse C. F. Ipsen
Mark Girolami
46
27
0
16 Jan 2018
Neural Network Gradient Hamiltonian Monte Carlo
Neural Network Gradient Hamiltonian Monte Carlo
Lingge Li
Andrew J Holbrook
Babak Shahbaba
Pierre Baldi
BDL
47
23
0
14 Nov 2017
On the construction of probabilistic Newton-type algorithms
On the construction of probabilistic Newton-type algorithms
A. Wills
Thomas B. Schon
51
13
0
05 Apr 2017
Bayesian Optimization with Gradients
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
65
210
0
13 Mar 2017
Linearly constrained Gaussian processes
Linearly constrained Gaussian processes
Carl Jidling
Niklas Wahlström
A. Wills
Thomas B. Schon
56
98
0
02 Mar 2017
Modeling and interpolation of the ambient magnetic field by Gaussian
  processes
Modeling and interpolation of the ambient magnetic field by Gaussian processes
Arno Solin
Manon Kok
Niklas Wahlström
Thomas B. Schon
Simo Särkkä
31
119
0
15 Sep 2015
Probabilistic Numerics and Uncertainty in Computations
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
76
307
0
03 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
86
515
0
03 Mar 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
128
913
0
17 Feb 2014
Probabilistic Interpretation of Linear Solvers
Probabilistic Interpretation of Linear Solvers
Philipp Hennig
81
104
0
10 Feb 2014
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
213
218
0
21 Jan 2014
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
94
611
0
18 Feb 2013
1