Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.07542
Cited By
High-Dimensional Gaussian Process Inference with Derivatives
15 February 2021
Filip de Roos
A. Gessner
Philipp Hennig
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"High-Dimensional Gaussian Process Inference with Derivatives"
21 / 21 papers shown
Title
Probabilistic Linear Solvers for Machine Learning
Jonathan Wenger
Philipp Hennig
80
17
0
19 Oct 2020
Deep Bayesian Quadrature Policy Optimization
Akella Ravi Tej
Kamyar Azizzadenesheli
Mohammad Ghavamzadeh
Anima Anandkumar
Yisong Yue
36
5
0
28 Jun 2020
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
BDL
48
3
0
05 Mar 2020
Stochastic quasi-Newton with line-search regularization
A. Wills
Thomas B. Schon
ODL
58
21
0
03 Sep 2019
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Filip de Roos
Philipp Hennig
AI4CE
ODL
61
3
0
20 Feb 2019
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
56
76
0
29 Oct 2018
Probabilistic Linear Solvers: A Unifying View
Simon Bartels
Jon Cockayne
Ilse C. F. Ipsen
Philipp Hennig
75
24
0
08 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
136
1,104
0
28 Sep 2018
Product Kernel Interpolation for Scalable Gaussian Processes
Jacob R. Gardner
Geoff Pleiss
Ruihan Wu
Kilian Q. Weinberger
A. Wilson
69
74
0
24 Feb 2018
A Bayesian Conjugate Gradient Method
Jon Cockayne
Chris J. Oates
Ilse C. F. Ipsen
Mark Girolami
46
27
0
16 Jan 2018
Neural Network Gradient Hamiltonian Monte Carlo
Lingge Li
Andrew J Holbrook
Babak Shahbaba
Pierre Baldi
BDL
47
23
0
14 Nov 2017
On the construction of probabilistic Newton-type algorithms
A. Wills
Thomas B. Schon
51
13
0
05 Apr 2017
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
65
210
0
13 Mar 2017
Linearly constrained Gaussian processes
Carl Jidling
Niklas Wahlström
A. Wills
Thomas B. Schon
56
98
0
02 Mar 2017
Modeling and interpolation of the ambient magnetic field by Gaussian processes
Arno Solin
Manon Kok
Niklas Wahlström
Thomas B. Schon
Simo Särkkä
31
119
0
15 Sep 2015
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
76
307
0
03 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
86
515
0
03 Mar 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
128
913
0
17 Feb 2014
Probabilistic Interpretation of Linear Solvers
Philipp Hennig
81
104
0
10 Feb 2014
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
213
218
0
21 Jan 2014
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
94
611
0
18 Feb 2013
1