Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.07389
Cited By
And/or trade-off in artificial neurons: impact on adversarial robustness
15 February 2021
A. Fontana
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"And/or trade-off in artificial neurons: impact on adversarial robustness"
10 / 10 papers shown
Title
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,837
0
06 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
125
1,245
0
29 Apr 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
130
2,036
0
08 Feb 2019
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
91
346
0
10 Sep 2018
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
68
1,189
0
28 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
283
12,060
0
19 Jun 2017
Comment on "Biologically inspired protection of deep networks from adversarial attacks"
Wieland Brendel
Matthias Bethge
AAML
80
34
0
05 Apr 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
253
14,912
1
21 Dec 2013
1