Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.07314
Cited By
The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods
15 February 2021
Wei Tao
Sheng Long
Gao-wei Wu
Qing Tao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Role of Momentum Parameters in the Optimal Convergence of Adaptive Polyak's Heavy-ball Methods"
17 / 17 papers shown
Title
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball
Othmane Sebbouh
Robert Mansel Gower
Aaron Defazio
43
22
0
14 Jun 2020
The Strength of Nesterov's Extrapolation in the Individual Convergence of Nonsmooth Optimization
Wei Tao
Zhisong Pan
Gao-wei Wu
Qing Tao
23
19
0
08 Jun 2020
A new regret analysis for Adam-type algorithms
Ahmet Alacaoglu
Yura Malitsky
P. Mertikopoulos
Volkan Cevher
ODL
56
41
0
21 Mar 2020
Understanding the Role of Momentum in Stochastic Gradient Methods
Igor Gitman
Hunter Lang
Pengchuan Zhang
Lin Xiao
57
95
0
30 Oct 2019
Heavy-ball Algorithms Always Escape Saddle Points
Tao Sun
Dongsheng Li
Zhe Quan
Hao Jiang
Shengguo Li
Y. Dou
ODL
44
21
0
23 Jul 2019
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
68
30
0
02 Jul 2019
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
93
2,499
0
19 Apr 2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
Christopher Liaw
Y. Plan
Sikander Randhawa
45
138
0
13 Dec 2018
Non-ergodic Convergence Analysis of Heavy-Ball Algorithms
Tao Sun
Penghang Yin
Dongsheng Li
Chun Huang
Lei Guan
Hao Jiang
36
46
0
05 Nov 2018
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization
Xiangyi Chen
Sijia Liu
Ruoyu Sun
Mingyi Hong
55
323
0
08 Aug 2018
The Unusual Effectiveness of Averaging in GAN Training
Yasin Yazici
Chuan-Sheng Foo
Stefan Winkler
Kim-Hui Yap
Georgios Piliouras
V. Chandrasekhar
106
175
0
12 Jun 2018
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Mahesh Chandra Mukkamala
Matthias Hein
ODL
54
258
0
17 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
62
1,030
0
23 May 2017
An overview of gradient descent optimization algorithms
Sebastian Ruder
ODL
204
6,184
0
15 Sep 2016
Unified Convergence Analysis of Stochastic Momentum Methods for Convex and Non-convex Optimization
Tianbao Yang
Qihang Lin
Zhe Li
61
122
0
12 Apr 2016
iPiano: Inertial Proximal Algorithm for Non-Convex Optimization
Peter Ochs
Yunjin Chen
Thomas Brox
Thomas Pock
73
433
0
18 Apr 2014
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
164
768
0
26 Sep 2011
1