Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.07048
Cited By
Connecting Interpretability and Robustness in Decision Trees through Separation
14 February 2021
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Connecting Interpretability and Robustness in Decision Trees through Separation"
8 / 8 papers shown
Title
Robustness questions the interpretability of graph neural networks: what to do?
Kirill Lukyanov
Georgii Sazonov
Serafim Boyarsky
Ilya Makarov
AAML
155
0
0
05 May 2025
Interpretable Differencing of Machine Learning Models
Swagatam Haldar
Diptikalyan Saha
Dennis L. Wei
Rahul Nair
Elizabeth M. Daly
11
1
0
10 Jun 2023
There is no Accuracy-Interpretability Tradeoff in Reinforcement Learning for Mazes
Yishay Mansour
Michal Moshkovitz
Cynthia Rudin
FAtt
29
3
0
09 Jun 2022
Verification-Aided Deep Ensemble Selection
Guy Amir
Tom Zelazny
Guy Katz
Michael Schapira
AAML
30
18
0
08 Feb 2022
Provably efficient, succinct, and precise explanations
Guy Blanc
Jane Lange
Li-Yang Tan
FAtt
29
35
0
01 Nov 2021
Interpretable Decision Trees Through MaxSAT
Josep Alós
Carlos Ansótegui
Eduard Torres
FAtt
19
8
0
26 Oct 2021
An Analysis of LIME for Text Data
Dina Mardaoui
Damien Garreau
FAtt
134
45
0
23 Oct 2020
A Closer Look at Accuracy vs. Robustness
Yao-Yuan Yang
Cyrus Rashtchian
Hongyang R. Zhang
Ruslan Salakhutdinov
Kamalika Chaudhuri
OOD
68
26
0
05 Mar 2020
1