ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06961
  4. Cited By
PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous
  Agents via Personalized Simulators

PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous Agents via Personalized Simulators

13 February 2021
Anish Agarwal
Abdullah Alomar
Varkey Alumootil
Devavrat Shah
Dennis Shen
Zhi Xu
Cindy Yang
    OffRL
ArXivPDFHTML

Papers citing "PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous Agents via Personalized Simulators"

34 / 34 papers shown
Title
Provably Good Batch Reinforcement Learning Without Great Exploration
Provably Good Batch Reinforcement Learning Without Great Exploration
Yao Liu
Adith Swaminathan
Alekh Agarwal
Emma Brunskill
OffRL
143
105
0
16 Jul 2020
FLAMBE: Structural Complexity and Representation Learning of Low Rank
  MDPs
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
155
226
0
18 Jun 2020
Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation
Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation
Devavrat Shah
Dogyoon Song
Zhi Xu
Yuzhe Yang
139
31
0
11 Jun 2020
Conservative Q-Learning for Offline Reinforcement Learning
Conservative Q-Learning for Offline Reinforcement Learning
Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
OffRL
OnRL
134
1,812
0
08 Jun 2020
MOPO: Model-based Offline Policy Optimization
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
74
768
0
27 May 2020
Context-aware Dynamics Model for Generalization in Model-Based
  Reinforcement Learning
Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning
Kimin Lee
Younggyo Seo
Seunghyun Lee
Honglak Lee
Jinwoo Shin
88
130
0
14 May 2020
MOReL : Model-Based Offline Reinforcement Learning
MOReL : Model-Based Offline Reinforcement Learning
Rahul Kidambi
Aravind Rajeswaran
Praneeth Netrapalli
Thorsten Joachims
OffRL
93
671
0
12 May 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
549
2,023
0
04 May 2020
Behavior Regularized Offline Reinforcement Learning
Behavior Regularized Offline Reinforcement Learning
Yifan Wu
George Tucker
Ofir Nachum
OffRL
89
685
0
26 Nov 2019
Provably Efficient Reinforcement Learning with Linear Function
  Approximation
Provably Efficient Reinforcement Learning with Linear Function Approximation
Chi Jin
Zhuoran Yang
Zhaoran Wang
Michael I. Jordan
86
557
0
11 Jul 2019
An Optimistic Perspective on Offline Reinforcement Learning
An Optimistic Perspective on Offline Reinforcement Learning
Rishabh Agarwal
Dale Schuurmans
Mohammad Norouzi
OffRL
OnRL
60
69
0
10 Jul 2019
Benchmarking Model-Based Reinforcement Learning
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
59
363
0
03 Jul 2019
Exploring Model-based Planning with Policy Networks
Exploring Model-based Planning with Policy Networks
Tingwu Wang
Jimmy Ba
71
149
0
20 Jun 2019
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
95
951
0
19 Jun 2019
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction
Aviral Kumar
Justin Fu
George Tucker
Sergey Levine
OffRL
OnRL
121
1,056
0
03 Jun 2019
Model-Based Reinforcement Learning for Atari
Model-Based Reinforcement Learning for Atari
Lukasz Kaiser
Mohammad Babaeizadeh
Piotr Milos
B. Osinski
R. Campbell
...
Sergey Levine
Afroz Mohiuddin
Ryan Sepassi
George Tucker
Henryk Michalewski
OffRL
124
860
0
01 Mar 2019
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos
Paavo Parmas
C. Rasmussen
Jan Peters
Kenji Doya
57
88
0
04 Feb 2019
Deep Online Learning via Meta-Learning: Continual Adaptation for
  Model-Based RL
Deep Online Learning via Meta-Learning: Continual Adaptation for Model-Based RL
Anusha Nagabandi
Chelsea Finn
Sergey Levine
OffRL
CLL
87
191
0
18 Dec 2018
Off-Policy Deep Reinforcement Learning without Exploration
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto
David Meger
Doina Precup
OffRL
BDL
223
1,608
0
07 Dec 2018
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
86
1,436
0
12 Nov 2018
Model-Based Reinforcement Learning via Meta-Policy Optimization
Model-Based Reinforcement Learning via Meta-Policy Optimization
I. Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
72
227
0
14 Sep 2018
Algorithmic Framework for Model-based Deep Reinforcement Learning with
  Theoretical Guarantees
Algorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees
Yuping Luo
Huazhe Xu
Yuanzhi Li
Yuandong Tian
Trevor Darrell
Tengyu Ma
OffRL
101
226
0
10 Jul 2018
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic
  Manipulation
QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation
Dmitry Kalashnikov
A. Irpan
P. Pastor
Julian Ibarz
Alexander Herzog
...
Deirdre Quillen
E. Holly
Mrinal Kalakrishnan
Vincent Vanhoucke
Sergey Levine
116
1,462
0
27 Jun 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
221
1,277
0
30 May 2018
Learning to Adapt in Dynamic, Real-World Environments Through
  Meta-Reinforcement Learning
Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning
Anusha Nagabandi
I. Clavera
Simin Liu
R. Fearing
Pieter Abbeel
Sergey Levine
Chelsea Finn
117
548
0
30 Mar 2018
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Meta Reinforcement Learning with Latent Variable Gaussian Processes
Steindór Sæmundsson
Katja Hofmann
M. Deisenroth
BDL
OffRL
AI4CE
74
141
0
20 Mar 2018
Model-Ensemble Trust-Region Policy Optimization
Model-Ensemble Trust-Region Policy Optimization
Thanard Kurutach
I. Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
84
452
0
28 Feb 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
172
5,182
0
26 Feb 2018
Safe Policy Improvement with Baseline Bootstrapping
Safe Policy Improvement with Baseline Bootstrapping
Romain Laroche
P. Trichelair
Rémi Tachet des Combes
OffRL
64
201
0
19 Dec 2017
Mastering Chess and Shogi by Self-Play with a General Reinforcement
  Learning Algorithm
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
...
D. Kumaran
T. Graepel
Timothy Lillicrap
Karen Simonyan
Demis Hassabis
139
1,771
0
05 Dec 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
823
11,899
0
09 Mar 2017
Spectral algorithms for tensor completion
Spectral algorithms for tensor completion
Andrea Montanari
Nike Sun
134
85
0
23 Dec 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,076
0
05 Jun 2016
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
308
3,434
0
02 Apr 2015
1