ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06828
  4. Cited By
Domain Adaptation for Time Series Forecasting via Attention Sharing

Domain Adaptation for Time Series Forecasting via Attention Sharing

13 February 2021
Xiaoyong Jin
Youngsuk Park
Danielle C. Maddix
Bernie Wang
Xifeng Yan
    TTA
    OOD
    AI4TS
ArXivPDFHTML

Papers citing "Domain Adaptation for Time Series Forecasting via Attention Sharing"

19 / 19 papers shown
Title
CICADA: Cross-Domain Interpretable Coding for Anomaly Detection and Adaptation in Multivariate Time Series
CICADA: Cross-Domain Interpretable Coding for Anomaly Detection and Adaptation in Multivariate Time Series
Tian-Shing Lan
Yifei Gao
Yimeng Lu
Chen Zhang
56
0
0
01 May 2025
TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data
Ege Onur Taga
M. E. Ildiz
Samet Oymak
AI4TS
55
2
0
22 Feb 2025
Forecasting with Hyper-Trees
Forecasting with Hyper-Trees
Alexander März
Kashif Rasul
44
0
0
13 May 2024
Pyramidal Hidden Markov Model For Multivariate Time Series Forecasting
Pyramidal Hidden Markov Model For Multivariate Time Series Forecasting
YeXin Huang
AI4TS
25
0
0
22 Oct 2023
Source-Free Domain Adaptation with Temporal Imputation for Time Series
  Data
Source-Free Domain Adaptation with Temporal Imputation for Time Series Data
Mohamed Ragab
Emadeldeen Eldele
Min-man Wu
Chuan-Sheng Foo
Xiaoli Li
Zhenghua Chen
TTA
AI4TS
19
18
0
14 Jul 2023
Koopa: Learning Non-stationary Time Series Dynamics with Koopman
  Predictors
Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors
Yong Liu
Chenyu Li
Jianmin Wang
Mingsheng Long
AI4TS
28
101
0
30 May 2023
Feature-aligned N-BEATS with Sinkhorn divergence
Feature-aligned N-BEATS with Sinkhorn divergence
Joon-Young Lee
Myeongho Jeon
Myung-joo Kang
Kyung-soon Park
AI4TS
22
0
0
24 May 2023
Label-efficient Time Series Representation Learning: A Review
Label-efficient Time Series Representation Learning: A Review
Emadeldeen Eldele
Mohamed Ragab
Zhenghua Chen
Min-man Wu
C. Kwoh
Xiaoli Li
AI4TS
27
13
0
13 Feb 2023
Koopman Neural Forecaster for Time Series with Temporal Distribution
  Shifts
Koopman Neural Forecaster for Time Series with Temporal Distribution Shifts
Rui Wang
Yihe Dong
Sercan Ö. Arik
Rose Yu
AI4TS
31
22
0
07 Oct 2022
A Comprehensive Review of Trends, Applications and Challenges In
  Out-of-Distribution Detection
A Comprehensive Review of Trends, Applications and Challenges In Out-of-Distribution Detection
Navid Ghassemi
E. F. Ersi
AAML
OODD
20
4
0
26 Sep 2022
Intrinsic Anomaly Detection for Multi-Variate Time Series
Intrinsic Anomaly Detection for Multi-Variate Time Series
Stephan Rabanser
Tim Januschowski
Kashif Rasul
Oliver Borchert
Richard Kurle
Jan Gasthaus
Michael Bohlke-Schneider
Nicolas Papernot
Valentin Flunkert
AI4TS
28
4
0
29 Jun 2022
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Yilmazcan Ozyurt
Stefan Feuerriegel
Ce Zhang
AI4TS
26
45
0
13 Jun 2022
Domain Adaptation for Time-Series Classification to Mitigate Covariate
  Shift
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift
Felix Ott
David Rügamer
Lucas Heublein
Bernd Bischl
Christopher Mutschler
OOD
TTA
AI4TS
33
31
0
07 Apr 2022
Robust Probabilistic Time Series Forecasting
Robust Probabilistic Time Series Forecasting
Taeho Yoon
Youngsuk Park
Ernest K. Ryu
Yuyang Wang
AAML
AI4TS
18
18
0
24 Feb 2022
Multivariate Quantile Function Forecaster
Multivariate Quantile Function Forecaster
Kelvin K. Kan
Franccois-Xavier Aubet
Tim Januschowski
Youngsuk Park
Konstantinos Benidis
Lars Ruthotto
Jan Gasthaus
AI4TS
37
22
0
23 Feb 2022
Learning Quantile Functions without Quantile Crossing for
  Distribution-free Time Series Forecasting
Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting
Youngsuk Park
Danielle C. Maddix
Franccois-Xavier Aubet
Kelvin K. Kan
Jan Gasthaus
Yuyang Wang
UQCV
AI4TS
91
37
0
12 Nov 2021
Informer: Beyond Efficient Transformer for Long Sequence Time-Series
  Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
169
3,876
0
14 Dec 2020
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood
  Glucose Trajectories
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories
Ian Fox
Lynn Ang
M. Jaiswal
R. Pop-Busui
Jenna Wiens
OOD
AI4TS
62
77
0
14 Jun 2018
Soft-DTW: a Differentiable Loss Function for Time-Series
Soft-DTW: a Differentiable Loss Function for Time-Series
Marco Cuturi
Mathieu Blondel
AI4TS
141
611
0
05 Mar 2017
1