Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06759
Cited By
Stochastic Gradient Langevin Dynamics with Variance Reduction
12 February 2021
Zhishen Huang
Stephen Becker
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Gradient Langevin Dynamics with Variance Reduction"
19 / 19 papers shown
Title
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
65
21
0
23 Jan 2020
Efficiently avoiding saddle points with zero order methods: No gradients required
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
60
34
0
29 Oct 2019
Heavy-ball Algorithms Always Escape Saddle Points
Tao Sun
Dongsheng Li
Zhe Quan
Hao Jiang
Shengguo Li
Y. Dou
ODL
52
21
0
23 Jul 2019
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
61
33
0
30 Apr 2019
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points
Zhize Li
67
38
0
19 Apr 2019
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions
Zhishen Huang
Stephen Becker
24
8
0
24 Jan 2019
Escaping Saddle Points in Constrained Optimization
Aryan Mokhtari
Asuman Ozdaglar
Ali Jadbabaie
63
53
0
06 Sep 2018
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
77
317
0
17 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
75
297
0
29 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
81
205
0
20 Jul 2017
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
58
194
0
25 May 2017
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
229
836
0
02 Mar 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
67
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
280
1,220
0
16 Aug 2016
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
101
604
0
19 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
118
392
0
17 Mar 2016
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
140
1,059
0
06 Mar 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
135
1,828
0
01 Jul 2014
1