ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06759
  4. Cited By
Stochastic Gradient Langevin Dynamics with Variance Reduction

Stochastic Gradient Langevin Dynamics with Variance Reduction

12 February 2021
Zhishen Huang
Stephen Becker
ArXiv (abs)PDFHTML

Papers citing "Stochastic Gradient Langevin Dynamics with Variance Reduction"

19 / 19 papers shown
Title
Replica Exchange for Non-Convex Optimization
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
65
21
0
23 Jan 2020
Efficiently avoiding saddle points with zero order methods: No gradients
  required
Efficiently avoiding saddle points with zero order methods: No gradients required
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
60
34
0
29 Oct 2019
Heavy-ball Algorithms Always Escape Saddle Points
Heavy-ball Algorithms Always Escape Saddle Points
Tao Sun
Dongsheng Li
Zhe Quan
Hao Jiang
Shengguo Li
Y. Dou
ODL
52
21
0
23 Jul 2019
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient
  Langevin Dynamics
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
61
33
0
30 Apr 2019
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle
  Points
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points
Zhize Li
67
38
0
19 Apr 2019
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and
  Non-smooth Objective Functions
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective Functions
Zhishen Huang
Stephen Becker
24
8
0
24 Jan 2019
Escaping Saddle Points in Constrained Optimization
Escaping Saddle Points in Constrained Optimization
Aryan Mokhtari
Asuman Ozdaglar
Ali Jadbabaie
63
53
0
06 Sep 2018
An Alternative View: When Does SGD Escape Local Minima?
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
77
317
0
17 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
75
297
0
29 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
81
205
0
20 Jul 2017
Convergence of Langevin MCMC in KL-divergence
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
58
194
0
25 May 2017
How to Escape Saddle Points Efficiently
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
229
836
0
02 Mar 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
67
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
280
1,220
0
16 Aug 2016
Stochastic Variance Reduction for Nonconvex Optimization
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
101
604
0
19 Mar 2016
Variance Reduction for Faster Non-Convex Optimization
Variance Reduction for Faster Non-Convex Optimization
Zeyuan Allen-Zhu
Elad Hazan
ODL
118
392
0
17 Mar 2016
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor
  Decomposition
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
140
1,059
0
06 Mar 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
135
1,828
0
01 Jul 2014
1