ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06747
  4. Cited By
Realizable Universal Adversarial Perturbations for Malware

Realizable Universal Adversarial Perturbations for Malware

12 February 2021
Raphael Labaca-Castro
Luis Muñoz-González
Feargus Pendlebury
Gabi Dreo Rodosek
Fabio Pierazzi
Lorenzo Cavallaro
    AAML
ArXivPDFHTML

Papers citing "Realizable Universal Adversarial Perturbations for Malware"

2 / 2 papers shown
Title
SentiNet: Detecting Localized Universal Attacks Against Deep Learning
  Systems
SentiNet: Detecting Localized Universal Attacks Against Deep Learning Systems
Edward Chou
Florian Tramèr
Giancarlo Pellegrino
AAML
173
287
0
02 Dec 2018
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
1