ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06697
13
10

Matching Point Sets with Quantum Circuit Learning

12 February 2021
Mohammadreza Noormandipour
Hanchen Wang
    3DPC
ArXivPDFHTML
Abstract

In this work, we propose a parameterised quantum circuit learning approach to point set matching problem. In contrast to previous annealing-based methods, we propose a quantum circuit-based framework whose parameters are optimised via descending the gradients w.r.t a kernel-based loss function. We formulate the shape matching problem into a distribution learning task; that is, to learn the distribution of the optimal transformation parameters. We show that this framework is able to find multiple optimal solutions for symmetric shapes and is more accurate, scalable and robust than the previous annealing-based method. Code, data and pre-trained weights are available at the project page: \href{https://hansen7.github.io/qKC}{https://hansen7.github.io/qKC}

View on arXiv
Comments on this paper