ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06695
  4. Cited By
Bias-Free Scalable Gaussian Processes via Randomized Truncations

Bias-Free Scalable Gaussian Processes via Randomized Truncations

12 February 2021
Andres Potapczynski
Luhuan Wu
D. Biderman
Geoff Pleiss
John P. Cunningham
ArXivPDFHTML

Papers citing "Bias-Free Scalable Gaussian Processes via Randomized Truncations"

6 / 6 papers shown
Title
Multi-fidelity Monte Carlo: a pseudo-marginal approach
Multi-fidelity Monte Carlo: a pseudo-marginal approach
Diana Cai
Ryan P. Adams
26
5
0
04 Oct 2022
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
80
19
0
30 May 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
35
10
0
31 Dec 2021
Scaling Structured Inference with Randomization
Scaling Structured Inference with Randomization
Yao Fu
John P. Cunningham
Mirella Lapata
BDL
32
2
0
07 Dec 2021
Barely Biased Learning for Gaussian Process Regression
Barely Biased Learning for Gaussian Process Regression
David R. Burt
A. Artemev
Mark van der Wilk
12
0
0
20 Sep 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
1