ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06589
  4. Cited By
Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform
  Stability

Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability

12 February 2021
Alec Farid
Anirudha Majumdar
ArXivPDFHTML

Papers citing "Generalization Bounds for Meta-Learning via PAC-Bayes and Uniform Stability"

22 / 22 papers shown
Title
Meta-learning for Positive-unlabeled Classification
Meta-learning for Positive-unlabeled Classification
Atsutoshi Kumagai
Tomoharu Iwata
Yasuhiro Fujiwara
25
1
0
06 Jun 2024
Tighter Generalisation Bounds via Interpolation
Tighter Generalisation Bounds via Interpolation
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
11
3
0
07 Feb 2024
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
Hossein Zakerinia
Amin Behjati
Christoph H. Lampert
FedML
22
4
0
06 Feb 2024
Federated Learning with Nonvacuous Generalisation Bounds
Federated Learning with Nonvacuous Generalisation Bounds
Pierre Jobic
Maxime Haddouche
Benjamin Guedj
FedML
27
3
0
17 Oct 2023
Towards Understanding the Generalizability of Delayed Stochastic
  Gradient Descent
Towards Understanding the Generalizability of Delayed Stochastic Gradient Descent
Xiaoge Deng
Li Shen
Shengwei Li
Tao Sun
Dongsheng Li
Dacheng Tao
20
3
0
18 Aug 2023
Learning via Wasserstein-Based High Probability Generalisation Bounds
Learning via Wasserstein-Based High Probability Generalisation Bounds
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
30
12
0
07 Jun 2023
Exponential Smoothing for Off-Policy Learning
Exponential Smoothing for Off-Policy Learning
Imad Aouali
Victor-Emmanuel Brunel
D. Rohde
Anna Korba
OffRL
25
11
0
25 May 2023
Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to
  Explain Generalisation
Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to Explain Generalisation
Maxime Haddouche
Benjamin Guedj
25
0
0
14 Apr 2023
Bayes meets Bernstein at the Meta Level: an Analysis of Fast Rates in
  Meta-Learning with PAC-Bayes
Bayes meets Bernstein at the Meta Level: an Analysis of Fast Rates in Meta-Learning with PAC-Bayes
Charles Riou
Pierre Alquier
Badr-Eddine Chérief-Abdellatif
35
8
0
23 Feb 2023
PAC-Bayesian Soft Actor-Critic Learning
PAC-Bayesian Soft Actor-Critic Learning
Bahareh Tasdighi
Abdullah Akgul
Manuel Haussmann
Kenny Kazimirzak Brink
M. Kandemir
29
3
0
30 Jan 2023
A Statistical Model for Predicting Generalization in Few-Shot
  Classification
A Statistical Model for Predicting Generalization in Few-Shot Classification
Yassir Bendou
Vincent Gripon
Bastien Pasdeloup
Lukas Mauch
Stefan Uhlich
Fabien Cardinaux
G. B. Hacene
Javier Alonso García
13
2
0
13 Dec 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
35
7
0
14 Nov 2022
Evaluated CMI Bounds for Meta Learning: Tightness and Expressiveness
Evaluated CMI Bounds for Meta Learning: Tightness and Expressiveness
Fredrik Hellström
G. Durisi
16
13
0
12 Oct 2022
On the Importance of Gradient Norm in PAC-Bayesian Bounds
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Itai Gat
Yossi Adi
A. Schwing
Tamir Hazan
BDL
29
6
0
12 Oct 2022
Hypernetwork approach to Bayesian MAML
Hypernetwork approach to Bayesian MAML
Piotr Borycki
Piotr Kubacki
Marcin Przewiȩźlikowski
Tomasz Ku'smierczyk
Jacek Tabor
P. Spurek
BDL
11
2
0
06 Oct 2022
Meta-Learning Priors for Safe Bayesian Optimization
Meta-Learning Priors for Safe Bayesian Optimization
Jonas Rothfuss
Christopher Koenig
Alisa Rupenyan
Andreas Krause
33
29
0
03 Oct 2022
Understanding Benign Overfitting in Gradient-Based Meta Learning
Understanding Benign Overfitting in Gradient-Based Meta Learning
Lisha Chen
Songtao Lu
Tianyi Chen
MLT
25
14
0
27 Jun 2022
Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning
Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning
Momin Abbas
Quan-Wu Xiao
Lisha Chen
Pin-Yu Chen
Tianyi Chen
21
78
0
08 Jun 2022
Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta
  Learning, Provably?
Is Bayesian Model-Agnostic Meta Learning Better than Model-Agnostic Meta Learning, Provably?
Lisha Chen
Tianyi
BDL
19
16
0
06 Mar 2022
Learning an Explicit Hyperparameter Prediction Function Conditioned on
  Tasks
Learning an Explicit Hyperparameter Prediction Function Conditioned on Tasks
Jun Shu
Deyu Meng
Zongben Xu
26
6
0
06 Jul 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
Pac-Bayesian Supervised Classification: The Thermodynamics of
  Statistical Learning
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
O. Catoni
145
453
0
03 Dec 2007
1