Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06571
Cited By
Bayesian Neural Network Priors Revisited
12 February 2021
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Neural Network Priors Revisited"
31 / 31 papers shown
Title
BackSlash: Rate Constrained Optimized Training of Large Language Models
Jun Wu
Jiangtao Wen
Yuxing Han
34
0
0
23 Apr 2025
Streamlining Prediction in Bayesian Deep Learning
Rui Li
Marcus Klasson
Arno Solin
Martin Trapp
UQCV
BDL
97
2
0
27 Nov 2024
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
37
4
0
10 Aug 2024
Implicit Neural Representations for Robust Joint Sparse-View CT Reconstruction
Jiayang Shi
Junyi Zhu
D. Pelt
K. Batenburg
Matthew B. Blaschko
35
3
0
03 May 2024
Infinitely wide limits for deep Stable neural networks: sub-linear, linear and super-linear activation functions
Alberto Bordino
Stefano Favaro
S. Fortini
30
7
0
08 Apr 2023
Detection of Uncertainty in Exceedance of Threshold (DUET): An Adversarial Patch Localizer
Terence Jie Chua
Wen-li Yu
Junfeng Zhao
AAML
UQCV
16
1
0
18 Mar 2023
Fixing Overconfidence in Dynamic Neural Networks
Lassi Meronen
Martin Trapp
Andrea Pilzer
Le Yang
Arno Solin
BDL
34
16
0
13 Feb 2023
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
18
52
0
11 Nov 2022
SPQR: An R Package for Semi-Parametric Density and Quantile Regression
Steven G. Xu
Reetam Majumder
Brian J. Reich
16
0
0
26 Oct 2022
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
30
4
0
24 Oct 2022
Variational Model Perturbation for Source-Free Domain Adaptation
Mengmeng Jing
Xiantong Zhen
Jingjing Li
Cees G. M. Snoek
34
25
0
19 Oct 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
51
71
0
19 Jul 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
23
5
0
22 Jun 2022
Large-width asymptotics for ReLU neural networks with
α
α
α
-Stable initializations
Stefano Favaro
S. Fortini
Stefano Peluchetti
20
2
0
16 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
80
8
0
27 May 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
68
8
0
24 May 2022
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
40
10
0
17 May 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
31
44
0
22 Feb 2022
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
19
139
0
20 Dec 2021
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCV
BDL
MedIm
31
9
0
08 Oct 2021
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
54
9
0
06 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
46
93
0
22 Jun 2021
Precise characterization of the prior predictive distribution of deep ReLU networks
Lorenzo Noci
Gregor Bachmann
Kevin Roth
Sebastian Nowozin
Thomas Hofmann
BDL
UQCV
16
32
0
11 Jun 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
30
23
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
21
37
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
15
60
0
17 May 2020
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1