ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06416
  4. Cited By
Explaining predictive models using Shapley values and non-parametric
  vine copulas

Explaining predictive models using Shapley values and non-parametric vine copulas

12 February 2021
K. Aas
T. Nagler
Martin Jullum
Anders Løland
    FAtt
ArXivPDFHTML

Papers citing "Explaining predictive models using Shapley values and non-parametric vine copulas"

8 / 8 papers shown
Title
A Comprehensive Study of Shapley Value in Data Analytics
A Comprehensive Study of Shapley Value in Data Analytics
Hong Lin
Shixin Wan
Zhongle Xie
Ke Chen
Meihui Zhang
Lidan Shou
Gang Chen
97
0
0
02 Dec 2024
Improving the Weighting Strategy in KernelSHAP
Improving the Weighting Strategy in KernelSHAP
Lars Henry Berge Olsen
Martin Jullum
TDI
FAtt
77
2
0
07 Oct 2024
Approximation of group explainers with coalition structure using Monte
  Carlo sampling on the product space of coalitions and features
Approximation of group explainers with coalition structure using Monte Carlo sampling on the product space of coalitions and features
Konstandinos Kotsiopoulos
A. Miroshnikov
Khashayar Filom
Arjun Ravi Kannan
FAtt
23
3
0
17 Mar 2023
Shapley Curves: A Smoothing Perspective
Shapley Curves: A Smoothing Perspective
Ratmir Miftachov
Georg Keilbar
Wolfgang Karl Härdle
FAtt
40
1
0
23 Nov 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive
  Models with Dependent Mixed Features
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
32
17
0
26 Nov 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
48
243
0
21 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
33
33
0
06 Nov 2020
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
113
2,735
0
18 Aug 2015
1