ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06408
  4. Cited By
Supervised training of spiking neural networks for robust deployment on
  mixed-signal neuromorphic processors

Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors

12 February 2021
Julian Büchel
D. Zendrikov
S. Solinas
Giacomo Indiveri
Dylan R. Muir
ArXivPDFHTML

Papers citing "Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors"

16 / 16 papers shown
Title
Distributed Representations Enable Robust Multi-Timescale Symbolic Computation in Neuromorphic Hardware
Distributed Representations Enable Robust Multi-Timescale Symbolic Computation in Neuromorphic Hardware
Madison Cotteret
Hugh Greatorex
Alpha Renner
Junren Chen
Emre Neftci
Huaqiang Wu
Giacomo Indiveri
Martin Ziegler
Elisabetta Chicca
91
2
0
02 May 2024
Implementing efficient balanced networks with mixed-signal spike-based
  learning circuits
Implementing efficient balanced networks with mixed-signal spike-based learning circuits
Julian Büchel
Jonathan Kakon
Michel Perez
Giacomo Indiveri
23
2
0
27 Oct 2020
Event-Based Backpropagation can compute Exact Gradients for Spiking
  Neural Networks
Event-Based Backpropagation can compute Exact Gradients for Spiking Neural Networks
Timo C. Wunderlich
Christian Pehle
73
119
0
17 Sep 2020
Weight Agnostic Neural Networks
Weight Agnostic Neural Networks
Adam Gaier
David R Ha
OOD
60
242
0
11 Jun 2019
A Review of Deep Learning with Special Emphasis on Architectures,
  Applications and Recent Trends
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Saptarshi Sengupta
Sanchita Basak
P. Saikia
Sayak Paul
Vasilios Tsalavoutis
Frederick Ditliac Atiah
V. Ravi
R. Peters
AI4CE
77
343
0
30 May 2019
The importance of space and time in neuromorphic cognitive agents
The importance of space and time in neuromorphic cognitive agents
Giacomo Indiveri
Yulia Sandamirskaya
AI4CE
54
47
0
26 Feb 2019
Surrogate Gradient Learning in Spiking Neural Networks
Surrogate Gradient Learning in Spiking Neural Networks
Emre Neftci
Hesham Mostafa
Friedemann Zenke
87
1,237
0
28 Jan 2019
Efficient keyword spotting using dilated convolutions and gating
Efficient keyword spotting using dilated convolutions and gating
A. Coucke
M. Chlieh
Thibault Gisselbrecht
David Leroy
Mathieu Poumeyrol
Thibaut Lavril
60
99
0
19 Nov 2018
Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
Demonstrating Advantages of Neuromorphic Computation: A Pilot Study
Youjie Li
Akos F. Kungl
Eric Müller
Andreas Hartel
Yannik Stradmann
...
Gerd Kiene
Christian Mauch
Alex Schwing
K. Meier
Mihai A. Petrovici
46
119
0
08 Nov 2018
A scalable multi-core architecture with heterogeneous memory structures
  for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)
A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)
S. Moradi
Ning Qiao
F. Stefanini
Giacomo Indiveri
65
482
0
14 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
285
2,264
0
24 Jun 2017
Predicting non-linear dynamics by stable local learning in a recurrent
  spiking neural network
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
Aditya Gilra
W. Gerstner
42
80
0
21 Feb 2017
Neuromorphic Deep Learning Machines
Neuromorphic Deep Learning Machines
Emre Neftci
C. Augustine
Somnath Paul
Georgios Detorakis
BDL
157
259
0
16 Dec 2016
Training Deep Spiking Neural Networks using Backpropagation
Training Deep Spiking Neural Networks using Backpropagation
Junhaeng Lee
T. Delbruck
Michael Pfeiffer
90
945
0
31 Aug 2016
EIE: Efficient Inference Engine on Compressed Deep Neural Network
EIE: Efficient Inference Engine on Compressed Deep Neural Network
Song Han
Xingyu Liu
Huizi Mao
Jing Pu
A. Pedram
M. Horowitz
W. Dally
118
2,456
0
04 Feb 2016
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
Quoc V. Le
Navdeep Jaitly
Geoffrey E. Hinton
ODL
86
719
0
03 Apr 2015
1