Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.06350
Cited By
Projected Wasserstein gradient descent for high-dimensional Bayesian inference
12 February 2021
Yifei Wang
Peng Chen
Wuchen Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Projected Wasserstein gradient descent for high-dimensional Bayesian inference"
10 / 10 papers shown
Title
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
29
2
0
25 Apr 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
21
20
0
10 Apr 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
11
17
0
21 Feb 2023
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
24
19
0
25 Nov 2022
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
29
21
0
21 Oct 2021
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
46
93
0
22 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
55
68
0
09 Feb 2020
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1