ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.06350
  4. Cited By
Projected Wasserstein gradient descent for high-dimensional Bayesian
  inference

Projected Wasserstein gradient descent for high-dimensional Bayesian inference

12 February 2021
Yifei Wang
Peng Chen
Wuchen Li
ArXivPDFHTML

Papers citing "Projected Wasserstein gradient descent for high-dimensional Bayesian inference"

10 / 10 papers shown
Title
The Score-Difference Flow for Implicit Generative Modeling
The Score-Difference Flow for Implicit Generative Modeling
Romann M. Weber
DiffM
29
2
0
25 Apr 2023
Forward-backward Gaussian variational inference via JKO in the
  Bures-Wasserstein Space
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
21
20
0
10 Apr 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations
  and Affine Invariance
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
11
17
0
21 Feb 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
24
19
0
25 Nov 2022
Efficient Gradient Flows in Sliced-Wasserstein Space
Efficient Gradient Flows in Sliced-Wasserstein Space
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
29
21
0
21 Oct 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
46
93
0
22 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
Projected Stein Variational Gradient Descent
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
55
68
0
09 Feb 2020
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1