ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.05375
  4. Cited By
Strength of Minibatch Noise in SGD

Strength of Minibatch Noise in SGD

10 February 2021
Liu Ziyin
Kangqiao Liu
Takashi Mori
Masakuni Ueda
    ODL
    MLT
ArXivPDFHTML

Papers citing "Strength of Minibatch Noise in SGD"

11 / 11 papers shown
Title
Correlated Noise in Epoch-Based Stochastic Gradient Descent:
  Implications for Weight Variances
Correlated Noise in Epoch-Based Stochastic Gradient Descent: Implications for Weight Variances
Marcel Kühn
B. Rosenow
24
3
0
08 Jun 2023
On a continuous time model of gradient descent dynamics and instability
  in deep learning
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
25
7
0
03 Feb 2023
On the Lipschitz Constant of Deep Networks and Double Descent
On the Lipschitz Constant of Deep Networks and Double Descent
Matteo Gamba
Hossein Azizpour
Mårten Björkman
33
7
0
28 Jan 2023
Training trajectories, mini-batch losses and the curious role of the
  learning rate
Training trajectories, mini-batch losses and the curious role of the learning rate
Mark Sandler
A. Zhmoginov
Max Vladymyrov
Nolan Miller
ODL
28
10
0
05 Jan 2023
On the Overlooked Structure of Stochastic Gradients
On the Overlooked Structure of Stochastic Gradients
Zeke Xie
Qian-Yuan Tang
Mingming Sun
P. Li
33
6
0
05 Dec 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of
  SGD via Training Trajectories and via Terminal States
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
35
10
0
19 Nov 2022
Noise Injection Node Regularization for Robust Learning
Noise Injection Node Regularization for Robust Learning
N. Levi
I. Bloch
M. Freytsis
T. Volansky
AI4CE
32
2
0
27 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
36
3
0
30 Jan 2022
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
236
0
04 Mar 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1