Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.05110
Cited By
Adversarial Perturbations Are Not So Weird: Entanglement of Robust and Non-Robust Features in Neural Network Classifiers
9 February 2021
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Perturbations Are Not So Weird: Entanglement of Robust and Non-Robust Features in Neural Network Classifiers"
7 / 7 papers shown
Title
Theoretical Understanding of Learning from Adversarial Perturbations
Soichiro Kumano
Hiroshi Kera
Toshihiko Yamasaki
AAML
33
1
0
16 Feb 2024
Adversarial Pixel Restoration as a Pretext Task for Transferable Perturbations
H. Malik
Shahina Kunhimon
Muzammal Naseer
Salman Khan
F. Khan
AAML
23
8
0
18 Jul 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
A Little Robustness Goes a Long Way: Leveraging Robust Features for Targeted Transfer Attacks
Jacob Mitchell Springer
Melanie Mitchell
Garrett Kenyon
AAML
31
43
0
03 Jun 2021
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
191
273
0
03 Dec 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1