Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04939
Cited By
RL for Latent MDPs: Regret Guarantees and a Lower Bound
9 February 2021
Jeongyeol Kwon
Yonathan Efroni
C. Caramanis
Shie Mannor
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RL for Latent MDPs: Regret Guarantees and a Lower Bound"
50 / 57 papers shown
Title
Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control
Heisei Yonezawa
Ansei Yonezawa
Itsuro Kajiwara
36
0
0
28 Apr 2025
Improving Controller Generalization with Dimensionless Markov Decision Processes
V. Charvet
Sebastian Stein
R. Murray-Smith
34
0
0
14 Apr 2025
A Classification View on Meta Learning Bandits
Mirco Mutti
Jeongyeol Kwon
Shie Mannor
Aviv Tamar
23
0
0
06 Apr 2025
Statistical Tractability of Off-policy Evaluation of History-dependent Policies in POMDPs
Yuheng Zhang
Nan Jiang
OffRL
61
0
0
03 Mar 2025
Personalized and Sequential Text-to-Image Generation
Ofir Nabati
Guy Tennenholtz
ChihWei Hsu
Moonkyung Ryu
Deepak Ramachandran
Yinlam Chow
Xiang Li
Craig Boutilier
MLLM
77
0
0
10 Dec 2024
Learning to Cooperate with Humans using Generative Agents
Yancheng Liang
Daphne Chen
Abhishek Gupta
S. Du
Natasha Jaques
SyDa
77
4
0
21 Nov 2024
Hybrid Transfer Reinforcement Learning: Provable Sample Efficiency from Shifted-Dynamics Data
Chengrui Qu
Laixi Shi
Kishan Panaganti
Pengcheng You
Adam Wierman
OffRL
OnRL
36
0
0
06 Nov 2024
Learning in Markov Games with Adaptive Adversaries: Policy Regret, Fundamental Barriers, and Efficient Algorithms
Thanh Nguyen-Tang
Raman Arora
74
1
0
01 Nov 2024
Test-Time Regret Minimization in Meta Reinforcement Learning
Mirco Mutti
Aviv Tamar
23
4
0
04 Jun 2024
RL in Latent MDPs is Tractable: Online Guarantees via Off-Policy Evaluation
Jeongyeol Kwon
Shie Mannor
C. Caramanis
Yonathan Efroni
OffRL
37
2
0
03 Jun 2024
A CMDP-within-online framework for Meta-Safe Reinforcement Learning
Vanshaj Khattar
Yuhao Ding
Bilgehan Sel
Javad Lavaei
Ming Jin
OffRL
32
12
0
26 May 2024
Pausing Policy Learning in Non-stationary Reinforcement Learning
Hyunin Lee
Ming Jin
Javad Lavaei
Somayeh Sojoudi
OffRL
34
2
0
25 May 2024
Preparing for Black Swans: The Antifragility Imperative for Machine Learning
Ming Jin
36
2
0
18 May 2024
DynaMITE-RL: A Dynamic Model for Improved Temporal Meta-Reinforcement Learning
Anthony Liang
Guy Tennenholtz
Chih-Wei Hsu
Yinlam Chow
Erdem Biyik
Craig Boutilier
OffRL
38
1
0
25 Feb 2024
On the Curses of Future and History in Future-dependent Value Functions for Off-policy Evaluation
Yuheng Zhang
Nan Jiang
OffRL
27
4
0
22 Feb 2024
Weakly Coupled Deep Q-Networks
Ibrahim El Shar
Daniel R. Jiang
19
2
0
28 Oct 2023
Prospective Side Information for Latent MDPs
Jeongyeol Kwon
Yonathan Efroni
Shie Mannor
C. Caramanis
23
5
0
11 Oct 2023
Tempo Adaptation in Non-stationary Reinforcement Learning
Hyunin Lee
Yuhao Ding
Jongmin Lee
Ming Jin
Javad Lavaei
Somayeh Sojoudi
9
3
0
26 Sep 2023
JoinGym: An Efficient Query Optimization Environment for Reinforcement Learning
Kaiwen Wang
Junxiong Wang
Yueying Li
Nathan Kallus
Immanuel Trummer
Wen Sun
GP
44
2
0
21 Jul 2023
Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight
Jiacheng Guo
Minshuo Chen
Haiquan Wang
Caiming Xiong
Mengdi Wang
Yu Bai
19
5
0
06 Jul 2023
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
Ruiquan Huang
Yitao Liang
J. Yang
OffRL
24
5
0
01 Jul 2023
Context-lumpable stochastic bandits
Chung-Wei Lee
Qinghua Liu
Yasin Abbasi-Yadkori
Chi Jin
Tor Lattimore
Csaba Szepesvári
OffRL
100
2
0
22 Jun 2023
Theoretical Hardness and Tractability of POMDPs in RL with Partial Online State Information
Ming Shi
Yingbin Liang
Ness B. Shroff
29
2
0
14 Jun 2023
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
Chengshuai Shi
Wei Xiong
Cong Shen
Jing Yang
OffRL
30
3
0
14 Jun 2023
Representations and Exploration for Deep Reinforcement Learning using Singular Value Decomposition
Yash Chandak
S. Thakoor
Z. Guo
Yunhao Tang
Rémi Munos
Will Dabney
Diana Borsa
13
2
0
01 May 2023
Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
Dylan J. Foster
Noah Golowich
Sham Kakade
20
10
0
22 Mar 2023
POPGym: Benchmarking Partially Observable Reinforcement Learning
Steven D. Morad
Ryan Kortvelesy
Matteo Bettini
Stephan Liwicki
Amanda Prorok
OffRL
14
37
0
03 Mar 2023
Reinforcement Learning with History-Dependent Dynamic Contexts
Guy Tennenholtz
Nadav Merlis
Lior Shani
Martin Mladenov
Craig Boutilier
AI4CE
11
6
0
04 Feb 2023
Learning in POMDPs is Sample-Efficient with Hindsight Observability
Jonathan Lee
Alekh Agarwal
Christoph Dann
Tong Zhang
26
19
0
31 Jan 2023
Adversarial Online Multi-Task Reinforcement Learning
Quan Nguyen
Nishant A. Mehta
14
1
0
11 Jan 2023
An Instrumental Variable Approach to Confounded Off-Policy Evaluation
Yang Xu
Jin Zhu
C. Shi
S. Luo
R. Song
OffRL
21
12
0
29 Dec 2022
Offline Policy Evaluation and Optimization under Confounding
Chinmaya Kausik
Yangyi Lu
Kevin Tan
Maggie Makar
Yixin Wang
Ambuj Tewari
OffRL
18
8
0
29 Nov 2022
Learning Mixtures of Markov Chains and MDPs
Chinmaya Kausik
Kevin Tan
Ambuj Tewari
13
11
0
17 Nov 2022
Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables
Mengdi Xu
Peide Huang
Yaru Niu
Visak C. V. Kumar
Jielin Qiu
...
Kuan-Hui Lee
Xuewei Qi
H. Lam
Bo-wen Li
Ding Zhao
OOD
54
9
0
21 Oct 2022
Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes
Runlong Zhou
Ruosong Wang
S. Du
31
3
0
20 Oct 2022
Tractable Optimality in Episodic Latent MABs
Jeongyeol Kwon
Yonathan Efroni
C. Caramanis
Shie Mannor
50
3
0
05 Oct 2022
Reward-Mixing MDPs with a Few Latent Contexts are Learnable
Jeongyeol Kwon
Yonathan Efroni
C. Caramanis
Shie Mannor
29
5
0
05 Oct 2022
Partially Observable RL with B-Stability: Unified Structural Condition and Sharp Sample-Efficient Algorithms
Fan Chen
Yu Bai
Song Mei
53
22
0
29 Sep 2022
Future-Dependent Value-Based Off-Policy Evaluation in POMDPs
Masatoshi Uehara
Haruka Kiyohara
Andrew Bennett
Victor Chernozhukov
Nan Jiang
Nathan Kallus
C. Shi
Wen Sun
OffRL
29
16
0
26 Jul 2022
PAC Reinforcement Learning for Predictive State Representations
Wenhao Zhan
Masatoshi Uehara
Wen Sun
Jason D. Lee
31
38
0
12 Jul 2022
On the Complexity of Adversarial Decision Making
Dylan J. Foster
Alexander Rakhlin
Ayush Sekhari
Karthik Sridharan
AAML
21
28
0
27 Jun 2022
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings
Masatoshi Uehara
Ayush Sekhari
Jason D. Lee
Nathan Kallus
Wen Sun
58
6
0
24 Jun 2022
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
Masatoshi Uehara
Ayush Sekhari
Jason D. Lee
Nathan Kallus
Wen Sun
OffRL
49
31
0
24 Jun 2022
Learning in Observable POMDPs, without Computationally Intractable Oracles
Noah Golowich
Ankur Moitra
Dhruv Rohatgi
24
26
0
07 Jun 2022
Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
13
0
20 Apr 2022
When Is Partially Observable Reinforcement Learning Not Scary?
Qinghua Liu
Alan Chung
Csaba Szepesvári
Chi Jin
14
92
0
19 Apr 2022
Model-Free and Model-Based Policy Evaluation when Causality is Uncertain
David Bruns-Smith
CML
ELM
OffRL
22
12
0
02 Apr 2022
Learning Markov Games with Adversarial Opponents: Efficient Algorithms and Fundamental Limits
Qinghua Liu
Yuanhao Wang
Chi Jin
AAML
24
15
0
14 Mar 2022
Understanding Curriculum Learning in Policy Optimization for Online Combinatorial Optimization
Runlong Zhou
Zelin He
Yuandong Tian
Yi Wu
S. Du
OffRL
18
3
0
11 Feb 2022
The Importance of Non-Markovianity in Maximum State Entropy Exploration
Mirco Mutti
Ric De Santi
Marcello Restelli
30
31
0
07 Feb 2022
1
2
Next