Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04737
Cited By
Federated Learning with Local Differential Privacy: Trade-offs between Privacy, Utility, and Communication
9 February 2021
Muah Kim
Onur Gunlu
Rafael F. Schaefer
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Federated Learning with Local Differential Privacy: Trade-offs between Privacy, Utility, and Communication"
17 / 17 papers shown
Title
A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues
Zibo Wang
Haichao Ji
Yifei Zhu
Dan Wang
Zhu Han
99
1
0
19 Apr 2024
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
130
4
0
01 Aug 2023
LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy
Lichao Sun
Jianwei Qian
Xun Chen
FedML
68
211
0
31 Jul 2020
LDP-Fed: Federated Learning with Local Differential Privacy
Stacey Truex
Ling Liu
Ka-Ho Chow
Mehmet Emre Gursoy
Wenqi Wei
FedML
56
395
0
05 Jun 2020
UVeQFed: Universal Vector Quantization for Federated Learning
Nir Shlezinger
Mingzhe Chen
Yonina C. Eldar
H. Vincent Poor
Shuguang Cui
FedML
MQ
54
227
0
05 Jun 2020
FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection
Ruixuan Liu
Yang Cao
Masatoshi Yoshikawa
Hong Chen
FedML
45
108
0
24 Mar 2020
Wireless Federated Learning with Local Differential Privacy
Mohamed Seif
Ravi Tandon
Ming Li
101
171
0
12 Feb 2020
A Better Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via
f
f
f
-Divergences
S. Asoodeh
Jiachun Liao
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
FedML
79
39
0
16 Jan 2020
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
125
1,616
0
01 Nov 2019
Differentially Private Federated Learning: A Client Level Perspective
Robin C. Geyer
T. Klein
Moin Nabi
FedML
128
1,295
0
20 Dec 2017
Collecting Telemetry Data Privately
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
55
686
0
05 Dec 2017
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
213
6,130
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,486
0
17 Feb 2016
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
118
681
0
04 Nov 2013
Privacy Aware Learning
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
153
290
0
07 Oct 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
167
768
0
26 Sep 2011
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
134
1,487
0
01 Dec 2009
1