ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.04700
  4. Cited By
Loss Function Discovery for Object Detection via Convergence-Simulation
  Driven Search

Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search

9 February 2021
Peidong Liu
Gengwei Zhang
Bochao Wang
Hang Xu
Xiaodan Liang
Yong-jia Jiang
Zhenguo Li
ArXivPDFHTML

Papers citing "Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search"

5 / 5 papers shown
Title
Domain Adaptable Fine-Tune Distillation Framework For Advancing Farm
  Surveillance
Domain Adaptable Fine-Tune Distillation Framework For Advancing Farm Surveillance
Raza Imam
Muhammad Huzaifa
Nabil Mansour
Shaher Bano Mirza
Fouad Lamghari
25
0
0
10 Feb 2024
Online Loss Function Learning
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
38
5
0
30 Jan 2023
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
FedML
33
11
0
19 Sep 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding
  Box Regression
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression
Jiabo He
S. Erfani
Xingjun Ma
James Bailey
Ying Chi
Xiansheng Hua
39
248
0
26 Oct 2021
Rank & Sort Loss for Object Detection and Instance Segmentation
Rank & Sort Loss for Object Detection and Instance Segmentation
Kemal Oksuz
Baris Can Cam
Emre Akbas
Sinan Kalkan
37
42
0
24 Jul 2021
1