Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04661
Cited By
Security and Privacy for Artificial Intelligence: Opportunities and Challenges
9 February 2021
Ayodeji Oseni
Nour Moustafa
Helge Janicke
Peng Liu
Z. Tari
A. Vasilakos
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Security and Privacy for Artificial Intelligence: Opportunities and Challenges"
24 / 74 papers shown
Title
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
280
4,160
0
18 Oct 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
312
4,657
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
145
1,909
0
08 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
109
1,811
0
09 Sep 2016
Data Poisoning Attacks on Factorization-Based Collaborative Filtering
Bo Li
Yining Wang
Aarti Singh
Yevgeniy Vorobeychik
AAML
89
346
0
29 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
282
8,587
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
547
5,912
0
08 Jul 2016
Adversarial Perturbations Against Deep Neural Networks for Malware Classification
Kathrin Grosse
Nicolas Papernot
Praveen Manoharan
Michael Backes
Patrick McDaniel
AAML
79
418
0
14 Jun 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
116
1,742
0
24 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
408
17,615
0
17 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
117
3,968
0
24 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
118
3,077
0
14 Nov 2015
A review of homomorphic encryption and software tools for encrypted statistical machine learning
L. Aslett
P. Esperança
Chris C. Holmes
52
72
0
26 Aug 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
367
19,745
0
09 Mar 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
Crypto-Nets: Neural Networks over Encrypted Data
P. Xie
Mikhail Bilenko
Tom Finley
Ran Gilad-Bachrach
Kristin E. Lauter
M. Naehrig
FedML
113
150
0
18 Dec 2014
Towards Deep Neural Network Architectures Robust to Adversarial Examples
S. Gu
Luca Rigazio
AAML
78
844
0
11 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
174
3,275
0
05 Dec 2014
Security Evaluation of Support Vector Machines in Adversarial Environments
Battista Biggio
Igino Corona
B. Nelson
Benjamin I. P. Rubinstein
Davide Maiorca
Giorgio Fumera
Giorgio Giacinto
and Fabio Roli
AAML
73
125
0
30 Jan 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
188
2,120
0
21 Dec 2013
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
127
1,595
0
27 Jun 2012
Security Analysis of Online Centroid Anomaly Detection
Marius Kloft
Pavel Laskov
119
97
0
27 Feb 2010
Previous
1
2