Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.04247
Cited By
Convolutional Neural Network Interpretability with General Pattern Theory
5 February 2021
Erico Tjoa
Cuntai Guan
FAtt
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Convolutional Neural Network Interpretability with General Pattern Theory"
24 / 24 papers shown
Title
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
301
30,152
0
01 Mar 2022
Stylized Neural Painting
Zhengxia Zou
Tianyang Shi
Shuang Qiu
Yi Yuan
NetEase Fuxi AI Lab
52
95
0
16 Nov 2020
There and Back Again: Revisiting Backpropagation Saliency Methods
Sylvestre-Alvise Rebuffi
Ruth C. Fong
Xu Ji
Andrea Vedaldi
FAtt
XAI
68
113
0
06 Apr 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
88
132
0
20 Dec 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
124
1,455
0
17 Jul 2019
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
152
1,972
0
08 Oct 2018
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock
Jeff Donahue
Karen Simonyan
274
5,407
0
28 Sep 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAtt
UQCV
125
683
0
28 Jun 2018
Explainable Recommendation: A Survey and New Perspectives
Yongfeng Zhang
Xu Chen
XAI
LRM
124
879
0
30 Apr 2018
Visual Explanation by Interpretation: Improving Visual Feedback Capabilities of Deep Neural Networks
José Oramas
Kaili Wang
Tinne Tuytelaars
XAI
FAtt
47
62
0
18 Dec 2017
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras
Timo Aila
S. Laine
J. Lehtinen
GAN
181
7,380
0
27 Oct 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
86
1,526
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,884
0
10 Apr 2017
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
340
19,711
0
21 Nov 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks
Anh Totti Nguyen
J. Yosinski
Jeff Clune
97
330
0
11 Feb 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
253
9,342
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
309
14,032
0
19 Nov 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
141
1,200
0
21 Sep 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.9K
77,520
0
18 May 2015
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
254
4,683
0
21 Dec 2014
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
605
15,907
0
12 Nov 2013
1