Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03837
Cited By
A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning
7 February 2021
Ze-kun Li
Wei Zhao
F. Shi
Lei Qi
Xingzhi Xie
Ying Wei
Z. Ding
Yang Gao
Shangjie Wu
Jun Liu
Yinghuan Shi
Dinggang Shen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning"
5 / 5 papers shown
Title
A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
Wei-Chien Wang
Euijoon Ahn
Da-wei Feng
Jinman Kim
MedIm
37
27
0
10 Feb 2023
Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images
Ziyu Su
Mostafa Rezapour
Usama Sajjad
M. Gürcan
M. Niazi
32
11
0
18 Jan 2023
MixUp-MIL: Novel Data Augmentation for Multiple Instance Learning and a Study on Thyroid Cancer Diagnosis
M. Gadermayr
Lukas Koller
M. Tschuchnig
Lea Maria Stangassinger
Christina Kreutzer
S. Couillard-Després
G. Oostingh
Anton Hittmair
45
13
0
10 Nov 2022
Temporal Context Matters: Enhancing Single Image Prediction with Disease Progression Representations
Aishik Konwer
Xuan Xu
Joseph Bae
Chaoyu Chen
Prateek Prasanna
MedIm
39
15
0
02 Mar 2022
Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using Quantitative Features from Chest CT Images
Zhenyu Tang
Wei Zhao
Xingzhi Xie
Zheng Zhong
F. Shi
Jun Liu
Dinggang Shen
33
171
0
26 Mar 2020
1