Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03349
Cited By
On the Reproducibility of Neural Network Predictions
5 February 2021
Srinadh Bhojanapalli
Kimberly Wilber
Andreas Veit
A. S. Rawat
Seungyeon Kim
A. Menon
Sanjiv Kumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Reproducibility of Neural Network Predictions"
24 / 24 papers shown
Title
Exponential Moving Average of Weights in Deep Learning: Dynamics and Benefits
Daniel Morales-Brotons
Thijs Vogels
Hadrien Hendrikx
121
17
0
27 Nov 2024
Distilling Influences to Mitigate Prediction Churn in Graph Neural Networks
Andreas Roth
Thomas Liebig
52
0
0
02 Oct 2023
Transferring Learning Trajectories of Neural Networks
Daiki Chijiwa
23
2
0
23 May 2023
Measuring and Mitigating Local Instability in Deep Neural Networks
Arghya Datta
Subhrangshu Nandi
Jingcheng Xu
Greg Ver Steeg
He Xie
Anoop Kumar
Aram Galstyan
20
3
0
18 May 2023
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
52
64
0
10 May 2023
Maintaining Stability and Plasticity for Predictive Churn Reduction
George Adam
B. Haibe-Kains
Anna Goldenberg
23
1
0
06 May 2023
Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks with Soft-Thresholding
Chunyan Xiong
Meng Lu
Xiaotong Yu
JIAN-PENG Cao
Zhong Chen
D. Guo
X. Qu
MLT
37
0
0
14 Apr 2023
On the Variance of Neural Network Training with respect to Test Sets and Distributions
Keller Jordan
OOD
21
10
0
04 Apr 2023
Measuring the Instability of Fine-Tuning
Yupei Du
D. Nguyen
20
4
0
15 Feb 2023
On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
Rohan Anil
S. Gadanho
Danya Huang
Nijith Jacob
Zhuoshu Li
...
Cristina Pop
Kevin Regan
G. Shamir
Rakesh Shivanna
Qiqi Yan
3DV
23
41
0
12 Sep 2022
Quantifying Inherent Randomness in Machine Learning Algorithms
Soham Raste
Rahul Singh
J. Vaughan
V. Nair
44
9
0
24 Jun 2022
On the Prediction Instability of Graph Neural Networks
Max Klabunde
Florian Lemmerich
40
5
0
20 May 2022
Predicting on the Edge: Identifying Where a Larger Model Does Better
Taman Narayan
Heinrich Jiang
Sen Zhao
Surinder Kumar
23
7
0
15 Feb 2022
Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations
G. Shamir
Dong Lin
HAI
OffRL
25
6
0
14 Feb 2022
Reproducibility in Optimization: Theoretical Framework and Limits
Kwangjun Ahn
Prateek Jain
Ziwei Ji
Satyen Kale
Praneeth Netrapalli
G. Shamir
19
22
0
09 Feb 2022
Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model Classes and Cone Decompositions
Aaron Mishkin
Arda Sahiner
Mert Pilanci
OffRL
77
30
0
02 Feb 2022
Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective
Ji Zhang
Haochuan Li
S. Sra
Ali Jadbabaie
66
9
0
12 Oct 2021
Use of speaker recognition approaches for learning and evaluating embedding representations of musical instrument sounds
Xuan Shi
Erica Cooper
Junichi Yamagishi
24
7
0
24 Jul 2021
Assessing Generalization of SGD via Disagreement
Yiding Jiang
Vaishnavh Nagarajan
Christina Baek
J. Zico Kolter
59
108
0
25 Jun 2021
Churn Reduction via Distillation
Heinrich Jiang
Harikrishna Narasimhan
Dara Bahri
Andrew Cotter
Afshin Rostamizadeh
27
15
0
04 Jun 2021
Synthesizing Irreproducibility in Deep Networks
R. Snapp
G. Shamir
OOD
22
10
0
21 Feb 2021
Knowledge Distillation by On-the-Fly Native Ensemble
Xu Lan
Xiatian Zhu
S. Gong
192
473
0
12 Jun 2018
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
278
404
0
09 Apr 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
1