ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03324
  4. Cited By
GIBBON: General-purpose Information-Based Bayesian OptimisatioN

GIBBON: General-purpose Information-Based Bayesian OptimisatioN

5 February 2021
Henry B. Moss
David S. Leslie
Javier I. González
Paul Rayson
ArXivPDFHTML

Papers citing "GIBBON: General-purpose Information-Based Bayesian OptimisatioN"

17 / 17 papers shown
Title
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
MONGOOSE: Path-wise Smooth Bayesian Optimisation via Meta-learning
Adam X. Yang
Laurence Aitchison
Henry B. Moss
29
4
0
22 Feb 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
20
17
0
16 Feb 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional
  Bayesian Optimization
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
11
4
0
16 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Fantasizing with Dual GPs in Bayesian Optimization and Active Learning
Paul E. Chang
Prakhar Verma
S. T. John
Victor Picheny
Henry B. Moss
Arno Solin
GP
30
6
0
02 Nov 2022
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
Multi-Fidelity Bayesian Optimization with Unreliable Information Sources
P. Mikkola
Julien Martinelli
Louis Filstroff
Samuel Kaski
30
10
0
25 Oct 2022
Joint Entropy Search for Multi-objective Bayesian Optimization
Joint Entropy Search for Multi-objective Bayesian Optimization
Ben Tu
Axel Gandy
N. Kantas
B. Shafei
24
38
0
06 Oct 2022
Joint Entropy Search for Maximally-Informed Bayesian Optimization
Joint Entropy Search for Maximally-Informed Bayesian Optimization
Carl Hvarfner
Frank Hutter
Luigi Nardi
41
36
0
09 Jun 2022
Information-theoretic Inducing Point Placement for High-throughput
  Bayesian Optimisation
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
20
4
0
06 Jun 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Low-rank variational Bayes correction to the Laplace method
Low-rank variational Bayes correction to the Laplace method
J. van Niekerk
Haavard Rue
BDL
18
13
0
25 Nov 2021
A portfolio approach to massively parallel Bayesian optimization
A portfolio approach to massively parallel Bayesian optimization
M. Binois
Nicholson T. Collier
J. Ozik
24
9
0
18 Oct 2021
Sequential- and Parallel- Constrained Max-value Entropy Search via
  Information Lower Bound
Sequential- and Parallel- Constrained Max-value Entropy Search via Information Lower Bound
Shion Takeno
T. Tamura
Kazuki Shitara
Masayuki Karasuyama
37
17
0
19 Feb 2021
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
Recursive co-kriging model for Design of Computer experiments with
  multiple levels of fidelity with an application to hydrodynamic
Recursive co-kriging model for Design of Computer experiments with multiple levels of fidelity with an application to hydrodynamic
Loic Le Gratiet
AI4CE
88
292
0
02 Oct 2012
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
162
1,123
0
25 Jul 2012
1