ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03322
  4. Cited By
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

5 February 2021
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
ArXivPDFHTML

Papers citing "CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks"

36 / 36 papers shown
Title
Generating Skyline Explanations for Graph Neural Networks
Generating Skyline Explanations for Graph Neural Networks
Dazhuo Qiu
Haolai Che
Arijit Khan
Yinghui Wu
38
0
0
12 May 2025
COMRECGC: Global Graph Counterfactual Explainer through Common Recourse
COMRECGC: Global Graph Counterfactual Explainer through Common Recourse
Gregoire Fournier
Sourav Medya
BDL
44
0
0
11 May 2025
Robustness questions the interpretability of graph neural networks: what to do?
Robustness questions the interpretability of graph neural networks: what to do?
Kirill Lukyanov
Georgii Sazonov
Serafim Boyarsky
Ilya Makarov
AAML
146
0
0
05 May 2025
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
Volkan Bakir
Polat Goktas
Sureyya Akyuz
52
0
0
26 Apr 2025
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
47
0
0
19 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
73
2
0
14 Feb 2025
Natural Language Counterfactual Explanations for Graphs Using Large Language Models
Natural Language Counterfactual Explanations for Graphs Using Large Language Models
Flavio Giorgi
Cesare Campagnano
Fabrizio Silvestri
Gabriele Tolomei
LRM
41
1
0
28 Jan 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Z. Hao
51
7
0
31 Dec 2024
GraphXAIN: Narratives to Explain Graph Neural Networks
GraphXAIN: Narratives to Explain Graph Neural Networks
Mateusz Cedro
David Martens
47
0
0
04 Nov 2024
Explainable Graph Neural Networks Under Fire
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
43
0
0
10 Jun 2024
Explaining Expert Search and Team Formation Systems with ExES
Explaining Expert Search and Team Formation Systems with ExES
Kiarash Golzadeh
Lukasz Golab
Jaroslaw Szlichta
27
0
0
21 May 2024
Feature Attribution with Necessity and Sufficiency via Dual-stage
  Perturbation Test for Causal Explanation
Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
Jose Miguel Hernandez-Lobato
AAML
36
2
0
13 Feb 2024
Incorporating Retrieval-based Causal Learning with Information
  Bottlenecks for Interpretable Graph Neural Networks
Incorporating Retrieval-based Causal Learning with Information Bottlenecks for Interpretable Graph Neural Networks
Jiahua Rao
Jiancong Xie
Hanjing Lin
Shuangjia Zheng
Zhen Wang
Yuedong Yang
21
0
0
07 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
44
2
0
19 Dec 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
  Diffusion
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
39
4
0
30 Oct 2023
Does Invariant Graph Learning via Environment Augmentation Learn
  Invariance?
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
28
34
0
29 Oct 2023
DEGREE: Decomposition Based Explanation For Graph Neural Networks
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
23
22
0
22 May 2023
Combining Stochastic Explainers and Subgraph Neural Networks can
  Increase Expressivity and Interpretability
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
36
0
0
14 Apr 2023
Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity
  Analysis
Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity Analysis
Haoyu He
Yuede Ji
H. H. Huang
23
20
0
26 Mar 2023
GANExplainer: GAN-based Graph Neural Networks Explainer
GANExplainer: GAN-based Graph Neural Networks Explainer
Yiqiao Li
Jianlong Zhou
Boyuan Zheng
Fang Chen
LLMAG
32
4
0
30 Dec 2022
Exploring Faithful Rationale for Multi-hop Fact Verification via
  Salience-Aware Graph Learning
Exploring Faithful Rationale for Multi-hop Fact Verification via Salience-Aware Graph Learning
Jiasheng Si
Yingjie Zhu
Deyu Zhou
27
12
0
02 Dec 2022
Global Counterfactual Explainer for Graph Neural Networks
Global Counterfactual Explainer for Graph Neural Networks
Mert Kosan
Zexi Huang
Sourav Medya
Sayan Ranu
Ambuj K. Singh
26
47
0
21 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
30
53
0
16 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
33
7
0
28 Sep 2022
Evaluating Explainability for Graph Neural Networks
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
40
99
0
19 Aug 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and
  Privacy Protection
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
30
25
0
20 May 2022
Cardinality-Minimal Explanations for Monotonic Neural Networks
Cardinality-Minimal Explanations for Monotonic Neural Networks
Ouns El Harzli
Bernardo Cuenca Grau
Ian Horrocks
FAtt
35
5
0
19 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Robust Counterfactual Explanations on Graph Neural Networks
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
37
96
0
08 Jul 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of
  GNN Explanation Methods
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
19
51
0
16 Jun 2021
Counterfactual Explanations for Neural Recommenders
Counterfactual Explanations for Neural Recommenders
Khanh Tran
Azin Ghazimatin
Rishiraj Saha Roy
AAML
CML
52
65
0
11 May 2021
Few-Shot Graph Learning for Molecular Property Prediction
Few-Shot Graph Learning for Molecular Property Prediction
Zhichun Guo
Chuxu Zhang
W. Yu
John E. Herr
Olaf Wiest
Meng-Long Jiang
Nitesh V. Chawla
AI4CE
116
169
0
16 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
592
0
31 Dec 2020
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised
  Classification
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
25
20
0
07 Dec 2020
BRPO: Batch Residual Policy Optimization
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
139
46
0
08 Feb 2020
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1