Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.03322
Cited By
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
5 February 2021
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks"
36 / 36 papers shown
Title
Generating Skyline Explanations for Graph Neural Networks
Dazhuo Qiu
Haolai Che
Arijit Khan
Yinghui Wu
38
0
0
12 May 2025
COMRECGC: Global Graph Counterfactual Explainer through Common Recourse
Gregoire Fournier
Sourav Medya
BDL
44
0
0
11 May 2025
Robustness questions the interpretability of graph neural networks: what to do?
Kirill Lukyanov
Georgii Sazonov
Serafim Boyarsky
Ilya Makarov
AAML
146
0
0
05 May 2025
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
Volkan Bakir
Polat Goktas
Sureyya Akyuz
52
0
0
26 Apr 2025
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
47
0
0
19 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
73
2
0
14 Feb 2025
Natural Language Counterfactual Explanations for Graphs Using Large Language Models
Flavio Giorgi
Cesare Campagnano
Fabrizio Silvestri
Gabriele Tolomei
LRM
41
1
0
28 Jan 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Z. Hao
51
7
0
31 Dec 2024
GraphXAIN: Narratives to Explain Graph Neural Networks
Mateusz Cedro
David Martens
47
0
0
04 Nov 2024
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
43
0
0
10 Jun 2024
Explaining Expert Search and Team Formation Systems with ExES
Kiarash Golzadeh
Lukasz Golab
Jaroslaw Szlichta
27
0
0
21 May 2024
Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
Jose Miguel Hernandez-Lobato
AAML
36
2
0
13 Feb 2024
Incorporating Retrieval-based Causal Learning with Information Bottlenecks for Interpretable Graph Neural Networks
Jiahua Rao
Jiancong Xie
Hanjing Lin
Shuangjia Zheng
Zhen Wang
Yuedong Yang
21
0
0
07 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
44
2
0
19 Dec 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
39
4
0
30 Oct 2023
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
28
34
0
29 Oct 2023
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
23
22
0
22 May 2023
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability
Indro Spinelli
Michele Guerra
F. Bianchi
Simone Scardapane
36
0
0
14 Apr 2023
Illuminati: Towards Explaining Graph Neural Networks for Cybersecurity Analysis
Haoyu He
Yuede Ji
H. H. Huang
23
20
0
26 Mar 2023
GANExplainer: GAN-based Graph Neural Networks Explainer
Yiqiao Li
Jianlong Zhou
Boyuan Zheng
Fang Chen
LLMAG
32
4
0
30 Dec 2022
Exploring Faithful Rationale for Multi-hop Fact Verification via Salience-Aware Graph Learning
Jiasheng Si
Yingjie Zhu
Deyu Zhou
27
12
0
02 Dec 2022
Global Counterfactual Explainer for Graph Neural Networks
Mert Kosan
Zexi Huang
Sourav Medya
Sayan Ranu
Ambuj K. Singh
26
47
0
21 Oct 2022
CLEAR: Generative Counterfactual Explanations on Graphs
Jing Ma
Ruocheng Guo
Saumitra Mishra
Aidong Zhang
Jundong Li
CML
OOD
30
53
0
16 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
33
7
0
28 Sep 2022
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
40
99
0
19 Aug 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
30
25
0
20 May 2022
Cardinality-Minimal Explanations for Monotonic Neural Networks
Ouns El Harzli
Bernardo Cuenca Grau
Ian Horrocks
FAtt
35
5
0
19 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
37
96
0
08 Jul 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
19
51
0
16 Jun 2021
Counterfactual Explanations for Neural Recommenders
Khanh Tran
Azin Ghazimatin
Rishiraj Saha Roy
AAML
CML
52
65
0
11 May 2021
Few-Shot Graph Learning for Molecular Property Prediction
Zhichun Guo
Chuxu Zhang
W. Yu
John E. Herr
Olaf Wiest
Meng-Long Jiang
Nitesh V. Chawla
AI4CE
116
169
0
16 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
592
0
31 Dec 2020
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
25
20
0
07 Dec 2020
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
139
46
0
08 Feb 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1