ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03183
  4. Cited By
Last iterate convergence of SGD for Least-Squares in the Interpolation
  regime
v1v2 (latest)

Last iterate convergence of SGD for Least-Squares in the Interpolation regime

5 February 2021
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
ArXiv (abs)PDFHTML

Papers citing "Last iterate convergence of SGD for Least-Squares in the Interpolation regime"

11 / 11 papers shown
Title
Improved Scaling Laws in Linear Regression via Data Reuse
Licong Lin
Jingfeng Wu
Peter Bartlett
12
0
0
10 Jun 2025
Optimal Rates in Continual Linear Regression via Increasing Regularization
Optimal Rates in Continual Linear Regression via Increasing Regularization
Ran Levinstein
Amit Attia
Matan Schliserman
Uri Sherman
Tomer Koren
Daniel Soudry
Itay Evron
CLL
20
0
0
06 Jun 2025
SGD with memory: fundamental properties and stochastic acceleration
SGD with memory: fundamental properties and stochastic acceleration
Dmitry Yarotsky
Maksim Velikanov
114
1
0
05 Oct 2024
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Licong Lin
Jingfeng Wu
Sham Kakade
Peter L. Bartlett
Jason D. Lee
LRM
145
20
0
12 Jun 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
136
1
0
03 Apr 2024
Statistical Inference for Linear Functionals of Online SGD in High-dimensional Linear Regression
Statistical Inference for Linear Functionals of Online SGD in High-dimensional Linear Regression
Bhavya Agrawalla
Krishnakumar Balasubramanian
Promit Ghosal
107
2
0
20 Feb 2023
Vector-Valued Least-Squares Regression under Output Regularity
  Assumptions
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte
Alessandro Rudi
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
77
6
0
16 Nov 2022
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral
  Conditions
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions
Maksim Velikanov
Dmitry Yarotsky
97
8
0
02 Feb 2022
On the Double Descent of Random Features Models Trained with SGD
On the Double Descent of Random Features Models Trained with SGD
Fanghui Liu
Johan A. K. Suykens
Volkan Cevher
MLT
101
10
0
13 Oct 2021
Generalization Error Rates in Kernel Regression: The Crossover from the
  Noiseless to Noisy Regime
Generalization Error Rates in Kernel Regression: The Crossover from the Noiseless to Noisy Regime
Hugo Cui
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
88
85
0
31 May 2021
Binary Classification of Gaussian Mixtures: Abundance of Support
  Vectors, Benign Overfitting and Regularization
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
Ke Wang
Christos Thrampoulidis
98
29
0
18 Nov 2020
1