ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03150
  4. Cited By
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra

Equivariant message passing for the prediction of tensorial properties and molecular spectra

5 February 2021
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
ArXivPDFHTML

Papers citing "Equivariant message passing for the prediction of tensorial properties and molecular spectra"

45 / 95 papers shown
Title
GPS++: Reviving the Art of Message Passing for Molecular Property
  Prediction
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
32
8
0
06 Feb 2023
Implicit Convolutional Kernels for Steerable CNNs
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
32
5
0
12 Dec 2022
Capturing long-range interaction with reciprocal space neural network
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
29
11
0
30 Nov 2022
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
32
44
0
29 Nov 2022
Learning the shape of protein micro-environments with a holographic
  convolutional neural network
Learning the shape of protein micro-environments with a holographic convolutional neural network
Michael N. Pun
Andrew Ivanov
Quinn Bellamy
Zachary Montague
Colin H. LaMont
P. Bradley
J. Otwinowski
Armita Nourmohammad
13
12
0
05 Nov 2022
PEMP: Leveraging Physics Properties to Enhance Molecular Property
  Prediction
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
Yuancheng Sun
Yimeng Chen
Weizhi Ma
Wenhao Huang
Kang Liu
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
20
7
0
18 Oct 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
32
136
0
13 Oct 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training
  Machine Learning Potentials
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
32
105
0
21 Sep 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
50
373
0
05 Aug 2022
Transition1x -- a Dataset for Building Generalizable Reactive Machine
  Learning Potentials
Transition1x -- a Dataset for Building Generalizable Reactive Machine Learning Potentials
M. Schreiner
Arghya Bhowmik
T. Vegge
Jonas Busk
Ole Winther
21
62
0
25 Jul 2022
Thermal half-lives of azobenzene derivatives: virtual screening based on
  intersystem crossing using a machine learning potential
Thermal half-lives of azobenzene derivatives: virtual screening based on intersystem crossing using a machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
26
20
0
23 Jul 2022
NeuralNEB -- Neural Networks can find Reaction Paths Fast
NeuralNEB -- Neural Networks can find Reaction Paths Fast
M. Schreiner
Arghya Bhowmik
T. Vegge
Peter Bjørn Jørgensen
Ole Winther
41
23
0
20 Jul 2022
e3nn: Euclidean Neural Networks
e3nn: Euclidean Neural Networks
Mario Geiger
Tess E. Smidt
40
173
0
18 Jul 2022
Unified 2D and 3D Pre-Training of Molecular Representations
Unified 2D and 3D Pre-Training of Molecular Representations
Jinhua Zhu
Yingce Xia
Lijun Wu
Shufang Xie
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
54
67
0
14 Jul 2022
Edge Direction-invariant Graph Neural Networks for Molecular Dipole
  Moments Prediction
Edge Direction-invariant Graph Neural Networks for Molecular Dipole Moments Prediction
Yang Jeong Park
GNN
23
1
0
26 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
173
0
17 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
41
441
0
15 Jun 2022
An Empirical Study of Retrieval-enhanced Graph Neural Networks
An Empirical Study of Retrieval-enhanced Graph Neural Networks
Dingmin Wang
Shengchao Liu
Hanchen Wang
Bernardo Cuenca Grau
Linfeng Song
Jian Tang
Song Le
Qi Liu
15
0
0
01 Jun 2022
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian
  Process Regression with Derivatives in Molecular-orbital-based Machine
  Learning
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning
Jiace Sun
Lixue Cheng
Thomas F. Miller
22
2
0
31 May 2022
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular
  Linker Design
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design
Yinan Huang
Xing Peng
Jianzhu Ma
Muhan Zhang
BDL
30
47
0
15 May 2022
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Xingang Peng
Shitong Luo
Jiaqi Guan
Qi Xie
Jian-wei Peng
Jianzhu Ma
27
176
0
15 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
33
66
0
06 Apr 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
31
86
0
28 Mar 2022
Equivariant Graph Attention Networks for Molecular Property Prediction
Equivariant Graph Attention Networks for Molecular Property Prediction
Tuan Le
Frank Noé
Djork-Arné Clevert
16
21
0
20 Feb 2022
Unsupervised Learning of Group Invariant and Equivariant Representations
Unsupervised Learning of Group Invariant and Equivariant Representations
R. Winter
Marco Bertolini
Tuan Le
Frank Noé
Djork-Arné Clevert
25
40
0
15 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
34
186
0
05 Feb 2022
Edge-based Tensor prediction via graph neural networks
Edge-based Tensor prediction via graph neural networks
Yang Zhong
Hongyu Yu
X. Gong
H. Xiang
13
2
0
15 Jan 2022
Equivariant graph neural networks for fast electron density estimation
  of molecules, liquids, and solids
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
16
36
0
01 Dec 2021
Directional Message Passing on Molecular Graphs via Synthetic
  Coordinates
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
42
35
0
08 Nov 2021
Surrogate- and invariance-boosted contrastive learning for data-scarce
  applications in science
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
29
16
0
15 Oct 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs
Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs
Fang Wu
Dragomir R. Radev
Huabin Xing
ViT
36
54
0
04 Oct 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for
  Molecules and Materials Based on Gaussian Moments
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
21
19
0
20 Sep 2021
Heterogeneous relational message passing networks for molecular dynamics
  simulations
Heterogeneous relational message passing networks for molecular dynamics simulations
Zun Wang
Chong Wang
Sibo Zhao
Yong Xu
Shaogang Hao
Chang-Yu Hsieh
B. Gu
W. Duan
19
25
0
02 Sep 2021
Excited state, non-adiabatic dynamics of large photoswitchable molecules
  using a chemically transferable machine learning potential
Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential
Simon Axelrod
E. Shakhnovich
Rafael Gómez-Bombarelli
29
49
0
10 Aug 2021
Geometric Deep Learning on Molecular Representations
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
Scalars are universal: Equivariant machine learning, structured like
  classical physics
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
  Ensembles
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles
O. Ganea
L. Pattanaik
Connor W. Coley
Regina Barzilay
K. Jensen
W. Green
Tommi Jaakkola
AI4CE
27
135
0
08 Jun 2021
BIGDML: Towards Exact Machine Learning Force Fields for Materials
BIGDML: Towards Exact Machine Learning Force Fields for Materials
H. E. Sauceda
Luis E Gálvez-González
Stefan Chmiela
L. O. Paz-Borbón
K. Müller
A. Tkatchenko
AI4CE
26
47
0
08 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
30
434
0
02 Jun 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
174
246
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
206
1,240
0
08 Jan 2021
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
149
446
0
16 Sep 2019
Previous
12