ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.02849
  4. Cited By
Semi-Synchronous Federated Learning for Energy-Efficient Training and
  Accelerated Convergence in Cross-Silo Settings

Semi-Synchronous Federated Learning for Energy-Efficient Training and Accelerated Convergence in Cross-Silo Settings

4 February 2021
Dimitris Stripelis
J. Ambite
    FedML
ArXivPDFHTML

Papers citing "Semi-Synchronous Federated Learning for Energy-Efficient Training and Accelerated Convergence in Cross-Silo Settings"

12 / 12 papers shown
Title
LiteChain: A Lightweight Blockchain for Verifiable and Scalable Federated Learning in Massive Edge Networks
Handi Chen
Rui Zhou
Yun-Hin Chan
Zhihan Jiang
Xianhao Chen
Edith C.H. Ngai
52
0
0
06 Mar 2025
Heterogeneity-aware Personalized Federated Learning via Adaptive Dual-Agent Reinforcement Learning
Heterogeneity-aware Personalized Federated Learning via Adaptive Dual-Agent Reinforcement Learning
Xi Chen
Qin Li
Haibin Cai
Ting Wang
60
0
0
28 Jan 2025
MetisFL: An Embarrassingly Parallelized Controller for Scalable &
  Efficient Federated Learning Workflows
MetisFL: An Embarrassingly Parallelized Controller for Scalable & Efficient Federated Learning Workflows
Dimitris Stripelis
Chrysovalantis Anastasiou
Patrick Toral
Armaghan Asghar
J. Ambite
35
1
0
01 Nov 2023
Federated Learning over Harmonized Data Silos
Federated Learning over Harmonized Data Silos
Dimitris Stripelis
J. Ambite
FedML
20
2
0
15 May 2023
Semi-Synchronous Personalized Federated Learning over Mobile Edge
  Networks
Semi-Synchronous Personalized Federated Learning over Mobile Edge Networks
Chaoqun You
Daquan Feng
Kun Guo
Howard H. Yang
Tony Q.S. Quek
38
12
0
27 Sep 2022
Towards Sparsified Federated Neuroimaging Models via Weight Pruning
Towards Sparsified Federated Neuroimaging Models via Weight Pruning
Dimitris Stripelis
Umang Gupta
Nikhil J. Dhinagar
Greg Ver Steeg
Paul M. Thompson
J. Ambite
FedML
24
0
0
24 Aug 2022
Secure Neuroimaging Analysis using Federated Learning with Homomorphic
  Encryption
Secure Neuroimaging Analysis using Federated Learning with Homomorphic Encryption
Dimitris Stripelis
Hamza Saleem
Tanmay Ghai
Nikhil J. Dhinagar
Umang Gupta
...
Greg Ver Steeg
Srivatsan Ravi
Muhammad Naveed
Paul M. Thompson
J. Ambite
FedML
46
53
0
07 Aug 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
Scaling Neuroscience Research using Federated Learning
Scaling Neuroscience Research using Federated Learning
Dimitris Stripelis
J. Ambite
Pradeep Lam
Paul M. Thompson
FedML
42
28
0
16 Feb 2021
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,707
0
18 Mar 2020
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
174
760
0
28 Sep 2019
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,687
0
14 Apr 2018
1