Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.01564
Cited By
Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)
2 February 2021
Richard Hawkins
Colin Paterson
Chiara Picardi
Yan Jia
R. Calinescu
Ibrahim Habli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Guidance on the Assurance of Machine Learning in Autonomous Systems (AMLAS)"
33 / 33 papers shown
Title
A Guide to Failure in Machine Learning: Reliability and Robustness from Foundations to Practice
Eric Heim
Oren Wright
David Shriver
OOD
FaML
73
0
0
01 Mar 2025
Landscape of AI safety concerns - A methodology to support safety assurance for AI-based autonomous systems
Ronald Schnitzer
Lennart Kilian
Simon Roessner
Konstantinos Theodorou
Sonja Zillner
89
0
0
18 Dec 2024
Developing Assurance Cases for Adversarial Robustness and Regulatory Compliance in LLMs
Tomas Bueno Momcilovic
Dian Balta
Beat Buesser
Giulio Zizzo
Mark Purcell
AAML
30
0
0
04 Oct 2024
A SAT-based approach to rigorous verification of Bayesian networks
Yang Luo
Zhemeng Yu
Lintao Ma
39
0
0
02 Aug 2024
Learning Run-time Safety Monitors for Machine Learning Components
Ozan Vardal
Richard Hawkins
Colin Paterson
Chiara Picardi
Daniel Omeiza
Lars Kunze
Ibrahim Habli
38
0
0
23 Jun 2024
The Open Autonomy Safety Case Framework
Michael Wagner
Carmen Carlan
ELM
18
2
0
08 Apr 2024
What's my role? Modelling responsibility for AI-based safety-critical systems
Philippa Ryan
Zoe Porter
Joanna Al-Qaddoumi
John McDermid
Ibrahim Habli
34
1
0
30 Dec 2023
Operationalizing Assurance Cases for Data Scientists: A Showcase of Concepts and Tooling in the Context of Test Data Quality for Machine Learning
Lisa Jöckel
Michael Kläs
Janek Groß
Pascal Gerber
Markus Scholz
...
Marc Teschner
Daniel Seifert
Richard Hawkins
John Molloy
Jens Ottnad
19
0
0
08 Dec 2023
KnowSafe: Combined Knowledge and Data Driven Hazard Mitigation in Artificial Pancreas Systems
Xugui Zhou
Maxfield Kouzel
Chloe Smith
H. Alemzadeh
27
1
0
13 Nov 2023
AI Hazard Management: A framework for the systematic management of root causes for AI risks
Ronald Schnitzer
Andreas Hapfelmeier
Sven Gaube
Sonja Zillner
24
3
0
25 Oct 2023
Towards a safe MLOps Process for the Continuous Development and Safety Assurance of ML-based Systems in the Railway Domain
M. Zeller
T. Waschulzik
Reiner N. Schmid
Claus Bahlmann
20
3
0
06 Jul 2023
Assurance for Autonomy -- JPL's past research, lessons learned, and future directions
M. Feather
A. Pinto
11
1
0
16 May 2023
Assessing Trustworthiness of Autonomous Systems
Greg Chance
Dhaminda B. Abeywickrama
Beckett LeClair
Owen Kerr
Kerstin Eder
13
5
0
05 May 2023
AERoS: Assurance of Emergent Behaviour in Autonomous Robotic Swarms
Dhaminda B. Abeywickrama
James Wilson
Suet Lee
Greg Chance
Peter D. Winter
Arianna Manzini
Ibrahim Habli
Shane Windsor
Sabine Hauert
Kerstin Eder
27
5
0
20 Feb 2023
A Trustworthiness Score to Evaluate DNN Predictions
Abanoub Ghobrial
Darryl Hond
Hamid Asgari
Kerstin Eder
27
2
0
21 Jan 2023
Towards Developing Safety Assurance Cases for Learning-Enabled Medical Cyber-Physical Systems
Maryam Bagheri
Josephine Lamp
Xugui Zhou
Lu Feng
H. Alemzadeh
16
4
0
23 Nov 2022
Creating a Safety Assurance Case for an ML Satellite-Based Wildfire Detection and Alert System
Richard Hawkins
Chiara Picardi
Lucy Donnell
Murray L. Ireland
12
2
0
08 Nov 2022
Review of the AMLAS Methodology for Application in Healthcare
Shakir Laher
Carla Brackstone
S. Reis
An Nguyen
Sean White
Ibrahim Habli
14
2
0
01 Sep 2022
Safety Assessment for Autonomous Systems' Perception Capabilities
J. Molloy
John McDermid
32
4
0
17 Aug 2022
Model predictivity assessment: incremental test-set selection and accuracy evaluation
E. Fekhari
Bertrand Iooss
Joseph Muré
L. Pronzato
M. Rendas
23
13
0
08 Jul 2022
Evaluating Automated Driving Planner Robustness against Adversarial Influence
Andres Molina-Markham
Silvia G. Ionescu
Erin Lanus
Derek Ng
Sam Sommerer
J. Rushanan
AAML
29
0
0
29 May 2022
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Markus Borg
Jens Henriksson
Kasper Socha
Olof Lennartsson
Elias Sonnsjo Lonegren
T. Bui
Piotr Tomaszewski
S. Sathyamoorthy
Sebastian Brink
M. H. Moghadam
35
23
0
16 Apr 2022
A Principles-based Ethics Assurance Argument Pattern for AI and Autonomous Systems
Zoe Porter
Ibrahim Habli
John McDermid
Marten H. L. Kaas
6
14
0
29 Mar 2022
Machine Learning Testing in an ADAS Case Study Using Simulation-Integrated Bio-Inspired Search-Based Testing
M. H. Moghadam
Markus Borg
Mehrdad Saadatmand
Seyed Jalaleddin Mousavirad
M. Bohlin
B. Lisper
22
10
0
22 Mar 2022
Safe AI -- How is this Possible?
Harald Ruess
Simon Burton
29
0
0
25 Jan 2022
The Role of Explainability in Assuring Safety of Machine Learning in Healthcare
Yan Jia
John McDermid
T. Lawton
Ibrahim Habli
33
48
0
01 Sep 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
26
31
0
09 Jun 2021
Sample selection from a given dataset to validate machine learning models
Bertrand Iooss
13
2
0
27 Apr 2021
An NCAP-like Safety Indicator for Self-Driving Cars
Jim Huang
H. Kurniawati
12
1
0
02 Apr 2021
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
50
87
0
02 Oct 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,696
0
28 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,842
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
932
0
21 Oct 2016
1