Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.01117
Cited By
SGD Generalizes Better Than GD (And Regularization Doesn't Help)
1 February 2021
I Zaghloul Amir
Tomer Koren
Roi Livni
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SGD Generalizes Better Than GD (And Regularization Doesn't Help)"
35 / 35 papers shown
Title
Rapid Overfitting of Multi-Pass Stochastic Gradient Descent in Stochastic Convex Optimization
Shira Vansover-Hager
Tomer Koren
Roi Livni
39
0
0
13 May 2025
The Double Descent Behavior in Two Layer Neural Network for Binary Classification
Chathurika S Abeykoon
A. Beknazaryan
Hailin Sang
53
1
0
27 Apr 2025
Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Chandan Tankala
Dheeraj M. Nagaraj
Anant Raj
44
0
0
17 Mar 2025
The Implicit Bias of Gradient Descent on Separable Multiclass Data
Hrithik Ravi
Clayton Scott
Daniel Soudry
Yutong Wang
45
2
0
02 Nov 2024
LoRA-GA: Low-Rank Adaptation with Gradient Approximation
Shaowen Wang
Linxi Yu
Jian Li
ALM
AI4CE
31
30
0
06 Jul 2024
The Sample Complexity of Gradient Descent in Stochastic Convex Optimization
Roi Livni
MLT
39
1
0
07 Apr 2024
Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization
Idan Attias
Gintare Karolina Dziugaite
Mahdi Haghifam
Roi Livni
Daniel M. Roy
30
6
0
14 Feb 2024
Convex SGD: Generalization Without Early Stopping
Julien Hendrickx
A. Olshevsky
MLT
LRM
25
1
0
08 Jan 2024
The Sample Complexity Of ERMs In Stochastic Convex Optimization
Dan Carmon
Roi Livni
Amir Yehudayoff
19
3
0
09 Nov 2023
Generalization Bounds for Label Noise Stochastic Gradient Descent
Jung Eun Huh
Patrick Rebeschini
13
1
0
01 Nov 2023
Semantic Segmentation of Porosity in 4D Spatio-Temporal X-ray μCT of Titanium Coated Ni wires using Deep Learning
Pradyumna Elavarthi
Arun J. Bhattacharjee
A. P. Y. Puente
Anca L. Ralescu
27
0
0
24 Jun 2023
Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm
B. L. Bars
A. Bellet
Marc Tommasi
Kevin Scaman
Giovanni Neglia
24
1
0
05 Jun 2023
Select without Fear: Almost All Mini-Batch Schedules Generalize Optimally
Konstantinos E. Nikolakakis
Amin Karbasi
Dionysis Kalogerias
33
5
0
03 May 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
26
38
0
11 Apr 2023
Domain Generalization with Adversarial Intensity Attack for Medical Image Segmentation
Zheyu Zhang
Bin Wang
Lanhong Yao
Ugur Demir
Debesh Jha
I. Turkbey
Boqing Gong
Ulas Bagci
AAML
MedIm
OOD
32
11
0
05 Apr 2023
Comparison between layer-to-layer network training and conventional network training using Deep Convolutional Neural Networks
Kiran Kumar Ashish Bhyravabhottla
WonSook Lee
16
0
0
27 Mar 2023
MagicEye: An Intelligent Wearable Towards Independent Living of Visually Impaired
S. C. Sethuraman
G. R. Tadkapally
Saraju Mohanty
Gautam Galada
Anitha Subramanian
17
2
0
24 Mar 2023
Lower Generalization Bounds for GD and SGD in Smooth Stochastic Convex Optimization
Peiyuan Zhang
Jiaye Teng
J.N. Zhang
39
4
0
19 Mar 2023
Information Theoretic Lower Bounds for Information Theoretic Upper Bounds
Roi Livni
21
14
0
09 Feb 2023
Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization
Mahdi Haghifam
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
Daniel M. Roy
Gintare Karolina Dziugaite
31
17
0
27 Dec 2022
On the Overlooked Structure of Stochastic Gradients
Zeke Xie
Qian-Yuan Tang
Mingming Sun
P. Li
31
6
0
05 Dec 2022
Stability and Generalization Analysis of Gradient Methods for Shallow Neural Networks
Yunwen Lei
Rong Jin
Yiming Ying
MLT
40
18
0
19 Sep 2022
Generalization Bounds for Stochastic Gradient Descent via Localized
ε
\varepsilon
ε
-Covers
Sejun Park
Umut Simsekli
Murat A. Erdogdu
43
9
0
19 Sep 2022
Trajectory-dependent Generalization Bounds for Deep Neural Networks via Fractional Brownian Motion
Chengli Tan
Jiang Zhang
Junmin Liu
43
1
0
09 Jun 2022
Differentially Private Generalized Linear Models Revisited
R. Arora
Raef Bassily
Cristóbal Guzmán
Michael Menart
Enayat Ullah
FedML
28
16
0
06 May 2022
Making Progress Based on False Discoveries
Roi Livni
38
0
0
19 Apr 2022
Benign Underfitting of Stochastic Gradient Descent
Tomer Koren
Roi Livni
Yishay Mansour
Uri Sherman
MLT
20
13
0
27 Feb 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
30
6
0
27 Feb 2022
Black-Box Generalization: Stability of Zeroth-Order Learning
Konstantinos E. Nikolakakis
Farzin Haddadpour
Dionysios S. Kalogerias
Amin Karbasi
MLT
24
2
0
14 Feb 2022
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
89
72
0
29 Sep 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
26
13
0
19 Jul 2021
SGD: The Role of Implicit Regularization, Batch-size and Multiple-epochs
Satyen Kale
Ayush Sekhari
Karthik Sridharan
193
29
0
11 Jul 2021
Never Go Full Batch (in Stochastic Convex Optimization)
I Zaghloul Amir
Y. Carmon
Tomer Koren
Roi Livni
37
14
0
29 Jun 2021
Stability and Deviation Optimal Risk Bounds with Convergence Rate
O
(
1
/
n
)
O(1/n)
O
(
1/
n
)
Yegor Klochkov
Nikita Zhivotovskiy
31
61
0
22 Mar 2021
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
128
259
0
10 Dec 2012
1