Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.12745
Cited By
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
29 January 2021
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP"
11 / 11 papers shown
Title
Improved Regret Analysis in Gaussian Process Bandits: Optimality for Noiseless Reward, RKHS norm, and Non-Stationary Variance
S. Iwazaki
Shion Takeno
76
1
0
10 Feb 2025
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
106
0
0
08 Nov 2024
Variance-Dependent Regret Bounds for Non-stationary Linear Bandits
Zhiyong Wang
Jize Xie
Yi Chen
J. C. Lui
Dongruo Zhou
28
0
0
15 Mar 2024
A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes
Han Zhong
Tong Zhang
32
26
0
15 May 2023
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
Runlong Zhou
Zihan Zhang
S. Du
44
10
0
31 Jan 2023
SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits
Subhojyoti Mukherjee
Qiaomin Xie
Josiah P. Hanna
R. Nowak
OffRL
45
5
0
29 Jan 2023
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes
Jiafan He
Heyang Zhao
Dongruo Zhou
Quanquan Gu
OffRL
51
53
0
12 Dec 2022
Learning Stochastic Shortest Path with Linear Function Approximation
Steffen Czolbe
Jiafan He
Adrian V. Dalca
Quanquan Gu
39
30
0
25 Oct 2021
UCB Momentum Q-learning: Correcting the bias without forgetting
Pierre Menard
O. D. Domingues
Xuedong Shang
Michal Valko
79
40
0
01 Mar 2021
Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Marc Abeille
Louis Faury
Clément Calauzènes
96
37
0
23 Oct 2020
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
132
135
0
09 Dec 2019
1