Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.12100
Cited By
v1
v2
v3 (latest)
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
28 January 2021
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Increasing the Confidence of Deep Neural Networks by Coverage Analysis"
41 / 41 papers shown
Title
Detecting Adversarial Examples by Input Transformations, Defense Perturbations, and Voting
F. Nesti
Alessandro Biondi
Giorgio Buttazzo
AAML
34
40
0
27 Jan 2021
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
AdvKnn: Adversarial Attacks On K-Nearest Neighbor Classifiers With Approximate Gradients
Xiaodan Li
YueFeng Chen
Yuan He
Hui Xue
OOD
AAML
36
9
0
15 Nov 2019
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
62
69
0
01 Oct 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
62
152
0
01 Apr 2019
Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing
Jingyi Wang
Guoliang Dong
Jun Sun
Xinyu Wang
Peixin Zhang
AAML
46
191
0
14 Dec 2018
How the Softmax Output is Misleading for Evaluating the Strength of Adversarial Examples
Utku Ozbulak
W. D. Neve
Arnout Van Messem
AAML
31
7
0
21 Nov 2018
Are adversarial examples inevitable?
Ali Shafahi
Wenjie Huang
Christoph Studer
Soheil Feizi
Tom Goldstein
SILM
74
283
0
06 Sep 2018
MULDEF: Multi-model-based Defense Against Adversarial Examples for Neural Networks
Siwakorn Srisakaokul
Yuhao Zhang
Zexuan Zhong
Wei Yang
Tao Xie
Bo Li
AAML
56
19
0
31 Aug 2018
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
67
9
0
21 Aug 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
185
1,002
0
05 Jun 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
86
1,179
0
17 May 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
149
508
0
13 Mar 2018
Testing Deep Neural Networks
Youcheng Sun
Xiaowei Huang
Daniel Kroening
James Sharp
Matthew Hill
Rob Ashmore
AAML
54
218
0
10 Mar 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
83
468
0
31 Jan 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
91
1,097
0
27 Dec 2017
MagNet and "Efficient Defenses Against Adversarial Attacks" are Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
AAML
55
249
0
22 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
128
1,504
0
02 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
125
864
0
29 Oct 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
163
2,159
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
317
12,131
0
19 Jun 2017
MagNet: a Two-Pronged Defense against Adversarial Examples
Dongyu Meng
Hao Chen
AAML
50
1,208
0
25 May 2017
Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
Matthias Hein
Maksym Andriushchenko
AAML
115
512
0
23 May 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
131
1,864
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,729
0
19 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
105
1,371
0
18 May 2017
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
257
3,737
0
28 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,148
0
04 Nov 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
282
8,583
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
545
5,910
0
08 Jul 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
886
27,416
0
02 Dec 2015
An Introduction to Convolutional Neural Networks
K. O’Shea
Ryan Nash
FaML
HAI
82
3,159
0
26 Nov 2015
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
115
3,967
0
24 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
113
3,076
0
14 Nov 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
364
19,733
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
280
14,712
0
20 Jun 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1