ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.11845
  4. Cited By
POD-DL-ROM: enhancing deep learning-based reduced order models for
  nonlinear parametrized PDEs by proper orthogonal decomposition

POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition

28 January 2021
S. Fresca
Andrea Manzoni
    AI4CE
ArXivPDFHTML

Papers citing "POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition"

22 / 22 papers shown
Title
Interpretable Spatial-Temporal Fusion Transformers: Multi-Output Prediction for Parametric Dynamical Systems with Time-Varying Inputs
Interpretable Spatial-Temporal Fusion Transformers: Multi-Output Prediction for Parametric Dynamical Systems with Time-Varying Inputs
Shuwen Sun
Lihong Feng
P. Benner
47
0
0
01 May 2025
Verification and Validation for Trustworthy Scientific Machine Learning
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
58
0
0
21 Feb 2025
Recurrent Deep Kernel Learning of Dynamical Systems
Recurrent Deep Kernel Learning of Dynamical Systems
N. Botteghi
Paolo Motta
Andrea Manzoni
P. Zunino
Mengwu Guo
33
1
0
30 May 2024
Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design
Deep polytopic autoencoders for low-dimensional linear parameter-varying approximations and nonlinear feedback design
Jan Heiland
Yongho Kim
Steffen W. R. Werner
BDL
37
0
0
26 Mar 2024
Polytopic Autoencoders with Smooth Clustering for Reduced-order
  Modelling of Flows
Polytopic Autoencoders with Smooth Clustering for Reduced-order Modelling of Flows
Jan Heiland
Yongho Kim
AI4CE
24
2
0
19 Jan 2024
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
M. Khamlich
F. Pichi
G. Rozza
34
4
0
26 Aug 2023
Branched Latent Neural Maps
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
38
4
0
04 Aug 2023
Deep Learning-based surrogate models for parametrized PDEs: handling
  geometric variability through graph neural networks
Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks
N. R. Franco
S. Fresca
Filippo Tombari
Andrea Manzoni
AI4CE
29
16
0
03 Aug 2023
Symplectic model reduction of Hamiltonian systems using data-driven
  quadratic manifolds
Symplectic model reduction of Hamiltonian systems using data-driven quadratic manifolds
Harsh Sharma
Hongliang Mu
Patrick Buchfink
R. Geelen
Silke Glas
Boris Kramer
23
28
0
24 May 2023
A graph convolutional autoencoder approach to model order reduction for
  parametrized PDEs
A graph convolutional autoencoder approach to model order reduction for parametrized PDEs
F. Pichi
B. Moya
J. Hesthaven
AI4CE
38
52
0
15 May 2023
An Implicit GNN Solver for Poisson-like problems
An Implicit GNN Solver for Poisson-like problems
Matthieu Nastorg
M. Bucci
T. Faney
J. Gratien
Guillaume Charpiat
Marc Schoenauer
AI4CE
34
2
0
06 Feb 2023
A two stages Deep Learning Architecture for Model Reduction of
  Parametric Time-Dependent Problems
A two stages Deep Learning Architecture for Model Reduction of Parametric Time-Dependent Problems
Isabella Carla Gonnella
M. Hess
G. Stabile
G. Rozza
AI4CE
32
2
0
24 Jan 2023
Multi-fidelity surrogate modeling using long short-term memory networks
Multi-fidelity surrogate modeling using long short-term memory networks
Paolo Conti
Mengwu Guo
Andrea Manzoni
J. Hesthaven
AI4CE
33
48
0
05 Aug 2022
AI-enhanced iterative solvers for accelerating the solution of large
  scale parametrized systems
AI-enhanced iterative solvers for accelerating the solution of large scale parametrized systems
Stefanos Nikolopoulos
I. Kalogeris
V. Papadopoulos
G. Stavroulakis
24
11
0
06 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for
  High-Dimensional Parametric Derivative Learning
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
32
39
0
21 Jun 2022
Multi-resolution partial differential equations preserved learning
  framework for spatiotemporal dynamics
Multi-resolution partial differential equations preserved learning framework for spatiotemporal dynamics
Xin-Yang Liu
Min Zhu
Lu Lu
Hao Sun
Jian-Xun Wang
PINN
AI4CE
33
45
0
09 May 2022
Active-learning-based non-intrusive Model Order Reduction
Active-learning-based non-intrusive Model Order Reduction
Qinyu Zhuang
D. Hartmann
H. Bungartz
Juan M Lorenzi
AI4CE
14
4
0
08 Apr 2022
An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for
  Extended Domains applied to Multiphase Flow in Pipes
An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for Extended Domains applied to Multiphase Flow in Pipes
Claire E. Heaney
Zef Wolffs
Jón Atli Tómasson
L. Kahouadji
P. Salinas
A. Nicolle
Omar K. Matar
Ionel M. Navon
N. Srinil
Christopher C. Pain
AI4CE
29
21
0
13 Feb 2022
Deep-HyROMnet: A deep learning-based operator approximation for
  hyper-reduction of nonlinear parametrized PDEs
Deep-HyROMnet: A deep learning-based operator approximation for hyper-reduction of nonlinear parametrized PDEs
Ludovica Cicci
S. Fresca
Andrea Manzoni
AI4CE
20
25
0
05 Feb 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive
  Residual Networks
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
30
22
0
14 Dec 2021
Real-time simulation of parameter-dependent fluid flows through deep
  learning-based reduced order models
Real-time simulation of parameter-dependent fluid flows through deep learning-based reduced order models
S. Fresca
Andrea Manzoni
AI4CE
21
36
0
10 Jun 2021
A Deep Learning approach to Reduced Order Modelling of Parameter
  Dependent Partial Differential Equations
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
26
45
0
10 Mar 2021
1