Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.11073
Cited By
Property Inference From Poisoning
26 January 2021
Melissa Chase
Esha Ghosh
Saeed Mahloujifar
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Property Inference From Poisoning"
21 / 21 papers shown
Title
Range Membership Inference Attacks
Jiashu Tao
Reza Shokri
48
1
0
09 Aug 2024
Noisy Neighbors: Efficient membership inference attacks against LLMs
Filippo Galli
Luca Melis
Tommaso Cucinotta
54
7
0
24 Jun 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
56
1
0
01 Jun 2024
State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey
Chaoyu Zhang
Shaoyu Li
AILaw
69
3
0
25 Feb 2024
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
49
2
0
07 Dec 2023
Deconstructing Classifiers: Towards A Data Reconstruction Attack Against Text Classification Models
Adel M. Elmahdy
A. Salem
SILM
25
6
0
23 Jun 2023
Summary Statistic Privacy in Data Sharing
Zinan Lin
Shuaiqi Wang
Vyas Sekar
Giulia Fanti
43
7
0
03 Mar 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
48
0
21 Feb 2023
Threats, Vulnerabilities, and Controls of Machine Learning Based Systems: A Survey and Taxonomy
Yusuke Kawamoto
Kazumasa Miyake
K. Konishi
Y. Oiwa
29
4
0
18 Jan 2023
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
A. Salem
Giovanni Cherubin
David Evans
Boris Köpf
Andrew Paverd
Anshuman Suri
Shruti Tople
Santiago Zanella Béguelin
47
35
0
21 Dec 2022
Inferring Class Label Distribution of Training Data from Classifiers: An Accuracy-Augmented Meta-Classifier Attack
Raksha Ramakrishna
Gyorgy Dán
25
2
0
08 Nov 2022
Distribution inference risks: Identifying and mitigating sources of leakage
Valentin Hartmann
Léo Meynent
Maxime Peyrard
Dimitrios Dimitriadis
Shruti Tople
Robert West
MIACV
29
14
0
18 Sep 2022
Data Isotopes for Data Provenance in DNNs
Emily Wenger
Xiuyu Li
Ben Y. Zhao
Vitaly Shmatikov
20
12
0
29 Aug 2022
SNAP: Efficient Extraction of Private Properties with Poisoning
Harsh Chaudhari
John Abascal
Alina Oprea
Matthew Jagielski
Florian Tramèr
Jonathan R. Ullman
MIACV
39
30
0
25 Aug 2022
Protecting Global Properties of Datasets with Distribution Privacy Mechanisms
Michelle Chen
O. Ohrimenko
FedML
24
12
0
18 Jul 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
51
109
0
31 Mar 2022
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
37
213
0
20 Jan 2022
Formalizing and Estimating Distribution Inference Risks
Anshuman Suri
David Evans
MIACV
45
51
0
13 Sep 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
28
71
0
04 Jul 2021
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
360
0
24 Mar 2020
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,034
0
29 Nov 2018
1