ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10799
  4. Cited By
ImageCHD: A 3D Computed Tomography Image Dataset for Classification of
  Congenital Heart Disease
v1v2 (latest)

ImageCHD: A 3D Computed Tomography Image Dataset for Classification of Congenital Heart Disease

26 January 2021
Xiaowei Xu
Tianchen Wang
Zhuang Jian
Haiyun Yuan
Meiping Huang
J. Cen
Qianjun Jia
Yuhao Dong
Yiyu Shi
    3DH
ArXiv (abs)PDFHTML

Papers citing "ImageCHD: A 3D Computed Tomography Image Dataset for Classification of Congenital Heart Disease"

9 / 9 papers shown
Title
MSU-Net: Multiscale Statistical U-Net for Real-time 3D Cardiac MRI Video
  Segmentation
MSU-Net: Multiscale Statistical U-Net for Real-time 3D Cardiac MRI Video Segmentation
Tianchen Wang
Jinjun Xiong
Xiaowei Xu
Meng Jiang
Yiyu Shi
Haiyun Yuan
Meiping Huang
Jian Zhuang
59
36
0
15 Sep 2019
A Fine-Grain Error Map Prediction and Segmentation Quality Assessment
  Framework for Whole-Heart Segmentation
A Fine-Grain Error Map Prediction and Segmentation Quality Assessment Framework for Whole-Heart Segmentation
Rongzhao Zhang
Albert C. S. Chung
35
9
0
29 Jul 2019
SCNN: A General Distribution based Statistical Convolutional Neural
  Network with Application to Video Object Detection
SCNN: A General Distribution based Statistical Convolutional Neural Network with Application to Video Object Detection
Tianchen Wang
Jinjun Xiong
Xiaowei Xu
Yiyu Shi
57
24
0
15 Mar 2019
CFUN: Combining Faster R-CNN and U-net Network for Efficient Whole Heart
  Segmentation
CFUN: Combining Faster R-CNN and U-net Network for Efficient Whole Heart Segmentation
Zhanwei Xu
Ziyi Wu
Jianjiang Feng
SSeg
59
68
0
12 Dec 2018
Iterative Segmentation from Limited Training Data: Applications to
  Congenital Heart Disease
Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease
Danielle Frances Pace
Adrian Dalca
T. Brosch
T. Geva
A. Powell
J. Weese
M. Moghari
Polina Golland
29
22
0
11 Sep 2018
A two-stage 3D Unet framework for multi-class segmentation on full
  resolution image
A two-stage 3D Unet framework for multi-class segmentation on full resolution image
Chengjia Wang
Tom J. MacGillivray
G. Macnaught
Guang Yang
D. Newby
SSegSupR
65
74
0
12 Apr 2018
Quantization of Fully Convolutional Networks for Accurate Biomedical
  Image Segmentation
Quantization of Fully Convolutional Networks for Accurate Biomedical Image Segmentation
Xiaowei Xu
Q. Lu
Yu Hu
Lin Yang
X. S. Hu
Danny Chen
Yiyu Shi
MedIm
71
85
0
13 Mar 2018
Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation
  in Congenital Heart Disease
Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease
J. Wolterink
T. Leiner
M. Viergever
Ivana Išgum
39
100
0
12 Apr 2017
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,378
0
18 May 2015
1