Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.10588
Cited By
Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration
26 January 2021
Song Mei
Theodor Misiakiewicz
Andrea Montanari
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration"
32 / 32 papers shown
Title
Sobolev norm inconsistency of kernel interpolation
Yunfei Yang
39
0
0
29 Apr 2025
Beyond Benign Overfitting in Nadaraya-Watson Interpolators
Daniel Barzilai
Guy Kornowski
Ohad Shamir
83
0
0
11 Feb 2025
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
70
3
0
05 Sep 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
49
4
0
14 Jun 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurelien Lucchi
Anastasis Kratsios
David Belius
45
8
0
02 Feb 2024
Universal Approximation Theorem and error bounds for quantum neural networks and quantum reservoirs
Lukas Gonon
A. Jacquier
43
13
0
24 Jul 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
32
12
0
26 May 2023
Least Squares Regression Can Exhibit Under-Parameterized Double Descent
Xinyue Li
Rishi Sonthalia
49
3
0
24 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
50
13
0
11 May 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
51
0
0
24 Mar 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
41
33
0
28 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
30
35
0
01 Feb 2023
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
42
9
0
18 Jan 2023
Random Feature Models for Learning Interacting Dynamical Systems
Yuxuan Liu
S. McCalla
Hayden Schaeffer
31
12
0
11 Dec 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors
Nikhil Ghosh
M. Belkin
24
7
0
23 Jul 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
53
15
0
13 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
47
121
0
03 May 2022
SRMD: Sparse Random Mode Decomposition
Nicholas Richardson
Hayden Schaeffer
Giang Tran
29
11
0
12 Apr 2022
HARFE: Hard-Ridge Random Feature Expansion
Esha Saha
Hayden Schaeffer
Giang Tran
48
14
0
06 Feb 2022
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
20
29
0
16 Nov 2021
Conditioning of Random Feature Matrices: Double Descent and Generalization Error
Zhijun Chen
Hayden Schaeffer
42
12
0
21 Oct 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
40
18
0
20 Sep 2021
Reconstruction on Trees and Low-Degree Polynomials
Frederic Koehler
Elchanan Mossel
35
9
0
14 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
41
71
0
06 Sep 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
28
9
0
29 Jul 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
26
35
0
14 Jun 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
55
89
0
25 Feb 2021
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
49
95
0
25 Jul 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
51
172
0
23 Apr 2020
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
88
281
0
09 Aug 2012
1