ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.10572
  4. Cited By
Transparent Contribution Evaluation for Secure Federated Learning on
  Blockchain
v1v2 (latest)

Transparent Contribution Evaluation for Secure Federated Learning on Blockchain

26 January 2021
Shuaicheng Ma
Yang Cao
L. Xiong
    FedML
ArXiv (abs)PDFHTML

Papers citing "Transparent Contribution Evaluation for Secure Federated Learning on Blockchain"

13 / 13 papers shown
Title
A Comprehensive Study of Shapley Value in Data Analytics
A Comprehensive Study of Shapley Value in Data Analytics
Hong Lin
Shixin Wan
Zhongle Xie
Ke Chen
Meihui Zhang
Lidan Shou
Gang Chen
141
0
0
02 Dec 2024
A Note on "Efficient Task-Specific Data Valuation for Nearest Neighbor
  Algorithms"
A Note on "Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms"
Wei Ping
Yue Liu
TDI
64
44
0
09 Apr 2023
2CP: Decentralized Protocols to Transparently Evaluate Contributivity in
  Blockchain Federated Learning Environments
2CP: Decentralized Protocols to Transparently Evaluate Contributivity in Blockchain Federated Learning Environments
Harry Cai
Daniel Rueckert
Jonathan Passerat-Palmbach
FedML
16
11
0
15 Nov 2020
FLAME: Differentially Private Federated Learning in the Shuffle Model
FLAME: Differentially Private Federated Learning in the Shuffle Model
Ruixuan Liu
Yang Cao
Hong Chen
Ruoyang Guo
Masatoshi Yoshikawa
FedML
75
95
0
17 Sep 2020
A Principled Approach to Data Valuation for Federated Learning
A Principled Approach to Data Valuation for Federated Learning
Tianhao Wang
Johannes Rausch
Ce Zhang
R. Jia
Basel Alomair
FedMLTDI
43
193
0
14 Sep 2020
FedSel: Federated SGD under Local Differential Privacy with Top-k
  Dimension Selection
FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection
Ruixuan Liu
Yang Cao
Masatoshi Yoshikawa
Hong Chen
FedML
45
108
0
24 Mar 2020
Wireless Federated Learning with Local Differential Privacy
Wireless Federated Learning with Local Differential Privacy
Mohamed Seif
Ravi Tandon
Ming Li
105
171
0
12 Feb 2020
Collecting and Analyzing Multidimensional Data with Local Differential
  Privacy
Collecting and Analyzing Multidimensional Data with Local Differential Privacy
Ning Wang
Xiaokui Xiao
Yifan Yang
Jun Zhao
S. Hui
Hyejin Shin
Junbum Shin
Ge Yu
48
325
0
28 Jun 2019
Deep Leakage from Gradients
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
100
2,225
0
21 Jun 2019
Data Shapley: Equitable Valuation of Data for Machine Learning
Data Shapley: Equitable Valuation of Data for Machine Learning
Amirata Ghorbani
James Zou
TDIFedML
76
789
0
05 Apr 2019
Towards Efficient Data Valuation Based on the Shapley Value
Towards Efficient Data Valuation Based on the Shapley Value
R. Jia
David Dao
Wei Ping
F. Hubis
Nicholas Hynes
Nezihe Merve Gürel
Yue Liu
Ce Zhang
Basel Alomair
C. Spanos
TDI
75
421
0
27 Feb 2019
Federated Machine Learning: Concept and Applications
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
78
2,322
0
13 Feb 2019
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
406
17,559
0
17 Feb 2016
1