ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.09500
11
5

Disentangled Sequence Clustering for Human Intention Inference

23 January 2021
Mark Zolotas
Y. Demiris
    DRL
ArXivPDFHTML
Abstract

Equipping robots with the ability to infer human intent is a vital precondition for effective collaboration. Most computational approaches towards this objective derive a probability distribution of "intent" conditioned on the robot's perceived state. However, these approaches typically assume task-specific labels of human intent are known a priori. To overcome this constraint, we propose the Disentangled Sequence Clustering Variational Autoencoder (DiSCVAE), a clustering framework capable of learning such a distribution of intent in an unsupervised manner. The proposed framework leverages recent advances in unsupervised learning to disentangle latent representations of sequence data, separating time-varying local features from time-invariant global attributes. As a novel extension, the DiSCVAE also infers a discrete variable to form a latent mixture model and thus enable clustering over these global sequence concepts, e.g. high-level intentions. We evaluate the DiSCVAE on a real-world human-robot interaction dataset collected using a robotic wheelchair. Our findings reveal that the inferred discrete variable coincides with human intent, holding promise for collaborative settings, such as shared control.

View on arXiv
Comments on this paper