Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.09192
Cited By
Gravity Optimizer: a Kinematic Approach on Optimization in Deep Learning
22 January 2021
Dariush Bahrami
Sadegh Pouriyan Zadeh
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gravity Optimizer: a Kinematic Approach on Optimization in Deep Learning"
18 / 18 papers shown
Title
A Comparison of Optimization Algorithms for Deep Learning
Derya Soydaner
125
156
0
28 Jul 2020
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
78
260
0
11 Oct 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
139
18,134
0
28 May 2019
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
96
2,499
0
19 Apr 2019
DeepOBS: A Deep Learning Optimizer Benchmark Suite
Frank Schneider
Lukas Balles
Philipp Hennig
ODL
102
71
0
13 Mar 2019
Adaptive Gradient Methods with Dynamic Bound of Learning Rate
Liangchen Luo
Yuanhao Xiong
Yan Liu
Xu Sun
ODL
80
602
0
26 Feb 2019
Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration
Soham De
Anirbit Mukherjee
Enayat Ullah
64
101
0
18 Jul 2018
Nostalgic Adam: Weighting more of the past gradients when designing the adaptive learning rate
Haiwen Huang
Changzhang Wang
Bin Dong
ODL
37
59
0
19 May 2018
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
Noam M. Shazeer
Mitchell Stern
ODL
76
1,048
0
11 Apr 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
283
8,883
0
25 Aug 2017
Variants of RMSProp and Adagrad with Logarithmic Regret Bounds
Mahesh Chandra Mukkamala
Matthias Hein
ODL
54
258
0
17 Jun 2017
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
68
1,032
0
23 May 2017
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,216
0
15 Jun 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,386
0
04 Sep 2014
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
155
6,625
0
22 Dec 2012
1