Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.08758
Cited By
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
21 January 2021
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations"
15 / 15 papers shown
Title
Gender Bias in Explainability: Investigating Performance Disparity in Post-hoc Methods
Mahdi Dhaini
Ege Erdogan
Nils Feldhus
Gjergji Kasneci
41
0
0
02 May 2025
In defence of post-hoc explanations in medical AI
Joshua Hatherley
Lauritz Munch
Jens Christian Bjerring
32
0
0
29 Apr 2025
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
26
0
0
22 Sep 2024
Need of AI in Modern Education: in the Eyes of Explainable AI (xAI)
Supriya Manna
Dionis Barcari
37
3
0
31 Jul 2024
Deep Natural Language Feature Learning for Interpretable Prediction
Felipe Urrutia
Cristian Buc
Valentin Barriere
23
1
0
09 Nov 2023
In Search of Verifiability: Explanations Rarely Enable Complementary Performance in AI-Advised Decision Making
Raymond Fok
Daniel S. Weld
19
61
0
12 May 2023
Towards a Praxis for Intercultural Ethics in Explainable AI
Chinasa T. Okolo
31
3
0
24 Apr 2023
Explainability in AI Policies: A Critical Review of Communications, Reports, Regulations, and Standards in the EU, US, and UK
L. Nannini
Agathe Balayn
A. Smith
11
37
0
20 Apr 2023
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
28
16
0
09 Oct 2022
A Test for Evaluating Performance in Human-Computer Systems
Andres Campero
Michelle Vaccaro
Jaeyoon Song
Haoran Wen
Abdullah Almaatouq
Thomas W. Malone
45
17
0
24 Jun 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
20
24
0
05 Jun 2022
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
32
25
0
17 Feb 2021
The Grammar of Interactive Explanatory Model Analysis
Hubert Baniecki
Dariusz Parzych
P. Biecek
16
44
0
01 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
29
371
0
30 Apr 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
227
3,681
0
28 Feb 2017
1